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We study diffusion and chaotic scattering in a chain of baker maps coupled 
together which forms an area-preserving mapping of an infinitely extended strip 
onto itself. This exactly solvable mapping sustains chaotic behaviors and diffu- 
sion processes. The relationship between the diffusion coefficient, the Lyapunov 
exponent, and the entropy per unit time is derived. The long-lived classical 
resonances of the Liouville evolution operator are proved to converge toward 

the  eigenvalues of the phenomenological diffusion equation. In this sense, 
there is a quasi-isomorphism between the resonance spectrum of the Liouville 
evolution and the eigenvalue spectrum of the phenomenological diffusion 
equation. Furthermore, we show that a fractal repeller is associated to each non- 
equilibrium state in the isolated and finite multibaker chain. The nonequilibrium 
states are all unstable with respect to the equilibrium, validating a weak form 
of the second principle Of thermodynamics for the present dynamical system. 
Consequences of nonequilibrium fractals on classical measurements are dis- 
cussed. We then describe the open multibaker chain as a scattering system. 
Fractal properties of chaotic scattering are here shown to be related to diffusion 
in the chain. 

KEY WORDS:  Nonequilibrium ffactal repeller; zeta function; Ruelle 
resonance; dynamical chaos; irreversibility. 

1. I N T R O D U C T I O N  

The recent developments in the field of chaotic dynamics are focusing more 
and more on large systems of interest in statistical mechanics (1 9),2 and are 

t Facult6 des Sciences, Universit6 Libre de Bruxelles, Campus Plaine, Code Postal 231, 
B-1050 Brussels, Belgium. 

2 In refs. 4 and 5, the authors assume a Nos6-Hoover dissipative coupling between the fluid 
and the reservoirs. As a consequence, there appears a chaotic attractor in phase space. We 
believe that this dissipative assumption is artificiaI and unnecessary. On the other hand, the 
fractal repellers we consider here arise in Hamiltonian systems without any dissipative 
assumption and are intrinsic to the system. In Section 6 we show that the coupling to 
reservoirs can be considered as Poisson statistical processes over the dynamical system, 
a definition which preserves the Hamiltonian character of the time evolution. 
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gradually suggesting that dynamical chaos is the new paradigm for under- 
standing irreversible processes. Interacting classical gases, liquids, or solids 
are typically nonlinear dynamical systems ruled by a Hamiltonian like 

H =  " + ~ V(ra) (1.1) 
i = 1  l <~i<.j<~N 

and confined in a container. These systems present the property of 
sensitivity to initial conditions already at the microscopic level of the 
motion of atoms and molecules in the gas. This sensitivity to initial condi- 
tions is characterized by the Lyapunov exponents, which are the rates of 
exponential separation between nearby trajectories/1~ 14) In many-body 
systems, there are as many positive Lyapunov exponents as independent 
stretching directions. Because the Hamiltonian systems are time-reversal 
symmetric and have a symplectic structure, a direction of contraction with 
a negative Lyapunov exponent corresponds to each stretching direction. 

In closed systems, the exponential separation of nearby trajectories 
cannot continue forever in a global way, so that folding of phase space 
volumes rapidly follows the first stage of stretching. This folding 
mechanism and the reinjection into the initial phase space volume generate 
dynamical randomness which is itself characterized by the Kolmogorov- 
Sinai (KS) entropy per unit time. In closed hyperbolic dynamical systems, 
the KS entropy is equal to the sum of the positive Lyapunov exponents 
according to Pesin's formulaJ 14'15) 

The entropy per unit time appears to be proportional to the number 
of particles in many-body classical systems. This result suggests the intro- 
duction of the entropy per unit time and volume. (16) Recent work has been 
devoted to the estimation of this quantity, which is of order of 103o 
digits/sec cm 3 in typical interacting gases. (4'6'71 This microscopic chaos 
must be distinguished from the recently studied macroscopic chaos arising 
from the nonlinear coupling between the hydrodynamic modes of far- 
from-equilibrium physicochemical systems. The known examples of chaos 
at the macroscopic level present KS entropies of the order of 0.01-100 
digits/sec. (17) In celestial mechanics, chaotic systems have a much lower 
power of dynamical randomness: for instance, Hyperion has a KS entropy 
of the order of 5 x 10 8 digits/sec.~18) On the other hand, microscopic 
chaos takes place on a much shorter time scale, of the order of the mean 
intercollisional time between the atoms or molecules. ~7) 

We arrive at the important result that interacting many-body systems 
without a hierarchy of constants of motion may be characterized in many 
cases by a positive entropy per unit time and volume, in contrast to the 
ideal gases and the harmonic solid, which have a vanishing entropy per 
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unit time and volume. (t6"19~'3 This feature is reminiscent of the fact that 
the ideal gases cannot sustain transport processes. In a different but 
related context, work on transport processes in few-degree-of-freedom 
Hamiltonian or conservative systems by Kadanoff, MacKay, Meiss, and 
others is also giving evidence that transport properties have their origin in 
the chaotic dynamics and the related Poincart-Birkhoff homoclinic 
tangles.(2~ 

Our purpose in the present paper is to demonstrate the existence of 
relationships between microscopic chaos and the transport properties of 
statistical mechanics, as suggested by the previous discussion. We shall here 
focus on diffusion in real space. The vehicle we use for this program is a 
simple and exactly solvable deterministic dynamical system of large spatial 
extension that we construct here for the first time. Our model is formed by 
a chain of coupled baker transformations. 

The baker transformation is a well-known example of a Bernoulli 
map which has been extensively studied in the last decades as a simple 
deterministic dynamical system showing the ergodic property of mixing, 
Kolmogorov, and Bernoulli(t1): 

qSb(x,y)=S(2x, y/2 0~<x<l/2,  0~<y<l  
(1.2) ~(2x-l,y/2+l/2) 1/2~<x< 1, 0~<y<l  

This famous mapping was described in the book by Hopf on ergodic 
theory (21) and later in the book by Arnold and Avez. (11~ The baker trans- 
formation is an area-preserving map on the unit square with a chaotic 
dynamics where many dynamical properties can be illustrated, such as 
construction of the symbolic dynamics, proof of the central limit theorem 
for a large class of functions showing that the dynamical fluctuations are 
Gaussian, and calculation of several correlation functions and of the 
correlation decay rates. The success of this model contributed to the inven- 
tion of related models, such as piecewise-linear 2D area-contracting maps 
with chaotic attractors (22) or area-preserving 2D maps isomorphic to 
Bernoulli processes with more than two symbols, or to Markov chains. 
A related class of simple maps is the famous Smale horseshoe and its 
variants. (23) 

Similar mappings have been invented with the purpose of modeling 
some physicochemical processes such as chemical reactions and, in 

3 The ideal gas is known to have an infinite KS entropy per unit time. This infinity has been 
shown (19) to arise from the logarithmic divergence of the e-entropy per unit time of the ideal 
gas, where e is the volume of an infinitesimal celt in phase space. However, the e-entropy per 
unit time is proportional to the area of a surface crossed by particles. As a consequence, the 
e-entropy per unit time divided by the volume, i.e., the e-entropy per unit time and unit 
volume, vanishes for all e in the limit of large volume. 
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particular, isomerization. In this context, Elskens and Kapral proposed in 
1985 a model of isomerization where three baker maps are coupled 
together. (24) The phase space is composed of two joined unit squares where 
two independent bakers act during a first step. In a second step, a third 
baker acts on the unit square composed of two contiguous halves of the 
two original unit squares. A rate process is thus induced between the two 
unit squares representing two states of a molecule. 

In the present paper, we describe a generalization of this model by 
coupling in a similar way a large number of baker transformations acting 
on a chain of squares. When the chain of squares extends to infinity, a 
diffusion process is induced along the chain by the chaotic dynamics of 
stretching and folding characteristic of the baker transformations. We shall 
call it the multibaker chain or multibaker mapping. Because the deter- 
ministic dynamics is piecewise-linear, its theoretical analysis is simple. As 
another tractable model of diffusion we mention the finite-horizon Lorentz 
gas studied by Bunimovich and Sinai (25) and Machta and Zwanzig. (26) 

As pieces of material can be put into different experimental conditions 
by changing the boundary conditions, we can consider the multibaker 
chain as (J) infinite, (2) finite and isolated, or (3) finite and open, with or 
without a continuous flow of particles. 

In the isolated chain, we study relaxation dynamics to equilibrium, 
calculating the spectrum of the decay rates. We use the new methods 
developed in the theory of dynamical systems and based on the periodic 
orbits of the system. (8'27 34) To introduce these new methods, let us recall 
the context of their development. In the well-known Koopman approach to 
classical dynamics (35) the linear evolution operator 

(U'f)(X) = f(~b'X) (1.3) 

is associated to Hamiltonian flows like (1.1). q~tX denotes the trajectory of 
(1.1) from the initial conditions X =  (q, p). Here f(X) is a function defined 
in phase space. When the function f(X) belongs to the Hilbert space 5e2(#) 
constructed with the inner product based on the Liouville invariant 
measure #, the evolution operator U' turns out to be a unitary operator. 
For  continuous-time flows, U' can be written like 

U' = exp itL (1.4) 

in terms of the Lie group generator L, which is the Hermitian operator 
called the Liouvillian (36) 

L=i H' ,15, 
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The eigenvalues of this operator can only be real, forming a spectrum 
which is pointlike, singular, or continuous. This result is at the origin of a 
number of paradoxes and difficulties in our understanding of relaxation 
toward equilibrium. In the new approach by Mayer, Roepstorff, Ruelle, 
and others, the evolution operator (1.3) or its adjoint is extended and 
allowed to act on Schwartz distributions. ~27 31).4 In this generalization, the 
evolution operator acquires a spectrum formed by complex eigenvalues or 
resonances corresponding to eigendistributions. The resonances can be 
obtained as poles of Ruelle's zeta functions defined from the periodic orbits 
of the system. The imaginary parts of the resonances give the decay rates 
of the relaxation to equilibrium. Ruelle's zeta functions (2~) and their poles, 
known as Ruelle's resonances, TM 34) can here be explicitly calculated and 
shown to give the decay rates of a diffusive dynamics for the isolated 
multibaker chain. 

On the other hand, the dynamics in the open chain appears as a 
typical chaotic scattering process. The scattering map is shown to have 
singularities on a fractal set of ingoing trajectories. Chaotic scattering has 
been much studied recently in systems with a few scatterers and, in 
particular, in the three-disk scatterer. (8"3~ With the multibaker chain 
as well as with the open Lorentz gas described in ref. 9 we extend the 
study of chaotic scattering to systems of statistical mechanics, where we 
find deep and fruitful connections with transport properties, as shown in 
the following sections. In the open chain, Ruelle's resonances obtained from 
the zeta function appear as the classical analogue of the quantum scattering 
resonances.~8) 

The paper is composed of six parts. In Section 2 we describe the 
spectral theory of the classical evolution operator enriched with the 
concepts of Ruelle's zeta function and of classical scattering resonances. 
We show in this section how the relaxation and decay rates of a dynamical 
system can be calculated as resonances. 

In Section 3 we define the multibaker map of infinite extension where 
diffusion occurs. The diffusion coefficient is there calculated and related to 
the velocity autocorrelation function. 

In Section 4 we construct the closed and finite chain of baker transfor- 
mations. Nonequilibrium states are defined by absorbing boundaries. On 
one hand, we show how this first-passage problem generates a fractal set 

4 We give an example of an eigendistribution for the simple area-preserving mapping, which 
is r y) = (Ax, A-~y). The invariant set is a periodic orbit of saddle type at the origin. The 
escape rates of this repeller are ~'k = (k + 1) In A of multiplicity k + 1 (k ~ N). The Schwartz 
distributions corresponding to these complex eigenvalues are tPk,l(x,y)=yk-lO~l~(X) 
( / =  0,..., k), where 6 ~t) is the l th derivative of the Dirac distribution. These eigendistributions 
satisfy U~b~, t = [exp( --~ ~kJ" 
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of trapped trajectories in a one-particle system, and, on the other hand, we 
treat the problem of density fluctuations between two parts of the finite 
chain following a suggestion by Eckmann and Rand. We prove that each 
nonequilibrium state is dynamically unstable since it is a fractal of saddle 
type with a positive escape rate and a fractional HausdOrff dimension. In 
contrast, the equilibrium state is stable with a zero escape rate because it 
fills the whole phase and has a Hausdorff  dimension equal to two. In this 
way, we establish a relation with the second principle of thermodynamics. 

In Section 5 we consider the open and finite chain of baker transfor- 
mations and we calculate exactly the spectrum of the scattering resonances 
for its evolution operator. We show how large-scale diffusion is related to 
chaotic scattering and the presence of a fractal repeller. In particular, 
we derive the relation between the diffusion coefficient, the Lyapunov 
exponent, and the entropy per unit time, as well as with the information 
dimension of the repeller. 

In Section 6 a concentration gradient is built in the open and finite 
multibaker chain to describe a nonequilibrium continuous flow of particles. 
We define here the nonequilibrium process as a Poisson suspension over 
the dynamical system. Fick's law is shown to hold on the chain. 

Conclusions are drawn in Section 7, where we discuss the extension of 
the methods developed here to other more realistic models such as the 
Lorentz gas, the hard-sphere gas, or the Lennard-Jones gas. 

2. EVOLUTION OPERATOR AND ITS RESONANCES 

The aim of this section is to recall some results about the spectral 
properties of the classical evolution operator as extension of the Koopman  
operator, ~35) which acts on functions defined over phase space. In par- 
ticular, we shall expose the new methods based on the concept of classical 
scattering resonances. 

2.1. Hyperbolic Systems 

In this paper, we shall study mappings for which several assumptions 
are made. In particular, we suppose that the system is hyperbolic, so that 
every trajectory is unstable of saddle typeJ ~4'23' 27) Recent work on classical 
systems has shown that a central role is played by the these hyperbolic 
zones to induce transport  in phase spaceJ 2~ 

The dynamical system is supposed to be a two-dimensional mapping 

Yl = ~ X o ,  Y = ( x ,  y) (2.1) 
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where the time t is discrete (t e Z). The mapping acts in a phase space Jg 
which may be bounded or unbounded. If the phase space is unbounded 
and extends to infinity, as well as in nonequilibrium problems in large, 
bounded phase space, we shall consider the restricted system formed by the 
trajectories which are indefinitely trapped in a bounded domain ~ o f  ~r 
The mapping 45 is assumed to be area-preserving in the sense that the 
determinant of its Jacobian matrix is unity: 

645 
for J = - -  det J(X) = 1, VXe ~ (2.2) 

OX' 

In the domain ~/ (or in the whole space Jr if it is bounded), the mapping 
is assumed to be hyperbolic, i.e., any trajectory 45'X is unstable of saddle 
type. Stable and unstable manifolds are associated to each trajectory. In the 
following sections, the mapping will even be uniformly hyperbolic, i.e., 
the stable and unstable manifolds have always the same directions and the 
stretching and contracting factors are constant everywhere, for instance, 
the absolute values A and A 5, respectively. Each periodic or nonperiodic 
trajectory possesses thus a positive and a negative Lyapunov exponents of 
equal absolute value because of the area-preserving property 

1 
2 = 2u = -As = - in A (2.3) 

~c 

where r is the time unit taken to perform one iteration 45. The mapping 45 
is also time-reversal symmetric in the sense that there exists a transforma- 
tion T such that 

45 l = T o 4 5 o T  (2.4) 

which is an involution, T 2 =  1. 

2.2. Liouville Dynamics and Its Complex Resonances 

The mapping induces a time evolution for measurable function 
# = {f(X)} defined on the phase space ~ ' .  This evolution is given by the 
linear operator defined by (42) 

(Uf)(X) = f(45X) (2.5) 

We consider that the functional space {f iX)}  is a Banach or Fr6chet space 
where the evolution operator can be written as an integral operator whose 
kernel is a distribution 

(U"f)(X) = f 6(45"X- Y) f (  Y) dY (2.6) 

where 6 is the two-dimensional Dirac distribution. 
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We expect that, for hyperbolic mappings, the correlation function 
between two observables f and g will decay like 

C(n) = _ (gU'~f ) = ~  (C(y)"~-C~1)[FI[ + " ' "  + c~m'O]n[m~)e -~*l~l (2.7) 
V 

The V's are the decay or relaxation rates, which are intrinsic to the system 
and which we want to determine. They may have an imaginary part, 
but their real part is always nonnegative. By time-reversal symmetry, 
C(n)=C(-n).  

As a consequence of (2.7), the spectral function defined by the Fourier 
transform of the correlation function admits two families of poles at ~32) 

2~m 
~o= +/7~ + - -  ( m e Z )  (2.8) 

-g 

because the spectral function is defined by a sum for time running from 
- m to + ~ .  However, in the decay of the correlation function at positive 
or negative times, only poles out of one of both families contribute because 
of the mixing property. Moreover, the multiplicity of the poles (2.8) is m~. 

Several recent works have shown how the decay rates can be 
calculated from the complex zeros of the Fredholm determinant of the 
evolution operator according to (28'3~ 

yn 
O=de t ( I - y U)=e x p -  ~ - - T r  U" (2.9) 

n n = l  

The zeros { y~ } of this determinant are identified with the eigenvalues of U 
according to 

1 1 
- - = e  ~ ,  7 v = - l n  y~ (2.10) 
Yv 

which give the decay rates {yv} appearing in (2.7). The trace of U" is 
defined from the kernel appearing in (2.6). The trace is then transformed 
into a sum over the fixed points of ~b n using a well-known property of the 
Dirac distribution 

Tr U"=-IdX6(Cb"X-X)= ~ Idet[J(")(X)-I]1-1 (2.11) 
X = ~ n X  

In (2.11), we denote by 

J(")(X) = - - ~  (X) (2.12) 

the Jacobian matrix of the mapping 45" at the fixed point X. 
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Since the mapping is assumed to be hyperbolic, each fixed point 
possesses one unstable and one stable eigenvalue. Working in the local 
coordinates around each fixed point, we expand the determinant of 
Eq. (2.11) into a Taylor series 

1 2 3 4 
Idet[J(" l (X)- l] l  ~ A ( ~ +  I~l (~)+ 2 + + "'" 

(2.13) 

Replacing the results into (2.9), the Fredholm determinant can be rewritten 
as a product of Ruelle's zeta functions/43) 

1 1 1 1 
d e t ( I -  yU) = ~I(Y~ ~2(Y) 2 ~3(Y) 3 ~4(Y) 4 (2.14) 

defined as (28> 

~ ( y ) - e x p n = l n - x =  ~xlA(~n)(X)IA ~). (X)~ ' 

For systems which are uniformly hyperbolic, we have A~I(X)= A ~, 
where A is the uniform stretching factor. Furthermore, the model that we 
shall describe in the next section possesses a symbolic dynamics equivalent 
to a topological Markov chain. Its trajectories are in one-to-one corre- 
spondence with bi-infinite sequences of symbols. A transition matrix A 
composed of O's and l's rules the way the symbols follow each other in 
these bi-infinite symbolic sequences./39'4~ The number of fixed points of ~n, 
which we denote by JV~, is then given by the standard trace of the topo- 
logical transition matrlx 139/ 

~ = T r  A n (2.16) 

The zeta function becomes 

n =, -~- \~--~j (2.17) 

We obtain finally 

1 
~ ( Y ) - d e t ( I -  yA ~A) (2.18) 

The calculation of the zeta function then reduces to the eigenvalue problem 
for the transition matrix A. We emphasize that this simple result holds only 
for uniformly hyperbolic systems like the multibaker chain. 
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According to the Perron-Frobenius theorem, (44) if the nonnegative 
matrix A is irreducible and aperiodic, it possesses a simple and positive 
eigenvalue which is larger than or equal to the moduli of all the others. The 
corresponding eigenvector and adjoint eigenvector have positive elements. 
We have thus the eigenvalues equations 

A lq?m)= Zml(Pm ) (2.19) 
( (oml A = )~rn ( ~-g ml (2.20) 

for m = 1, 2 ..... M and the eigenvalues are ordered like 

Z1 >~ IZ2[ ~> IZ3t/> ' "  ~> tZMI (2.21) 

with 21 > 0. 
If we know the eigenvalues of the matrix A, the Fredholm determinant 

is then given by the infinite product 

fi ( )~m )( Xm )2( ~3 ) 3 
d e t ( I - y U ) =  1 - ~ y  1 - T y  1 -  y ... (2.22) m=l 

For each factor labeled by m, the infinite product shows absolute 
convergence for every value of y since 

/~ < oo (2 .23)  
/~=1 

because A > 1. As a consequence, the zeros of the factors, i.e., 

A ~ 
ym,~-- Zm, m = 1 , 2 , 3  ..... M; f l= 1,2,3 .... (2.24) 

are also zeros of the infinite product (2.22). Whereupon the decay rates of 
our dynamical system are given by 

1 In A~ (2.25) 7m,# --=-11n ym,# = -  
"r z Zm 

The multiplicity of 7m, B is ft. The solutions (2.25) are the final solutions of 
our eigenvalue problem (2.9). 

A crucial observation that will be made in the following is that the 
stretching factor A is always larger than or equal to the largest eigenvalue 
of the matrix A, 

A >/Zl (2.26) 
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Although (2.26) appears here as an assumption, we shall see that this 
inequality is satisfied in the examples of the following sections. (2.26) 
results from the geometry of the folding mechanism induced by stretching 
in phase space. The inequality (2.26) says that the number of periodic 
orbits cannot grow at a rate which is faster than provided by the stretching 
mechanism. This condition is generally satisfied in deterministic and 
uniformly hyperbolic mappings. Because of (2.26), all the decay rates (2.25) 
have a positive real part. 

Two cases arise. In the first case, the system is open and particles can 
escape from the vicinity of the selected fixed points of ~", which have been 
used in the preceding calculation. In this case, the slowest decay rate 

7 -= h.~ = l l n  A (2.27) 

is a nonvanishing real number which gives the escape rate. As we shall 
show later, the selected trajectories then form a fractal repeller of trapped 
trajectories. {4l) 

In the second case, the system is bounded: no trajectory escapes, so 
that A =)~1 and the escape rate vanishes. The resonance (2.27) then turns 
into the eigenvalue 1 of the evolution operator corresponding to constant 
eigenfunction. (l~) The relaxation appearing in the mixing property will then 
be dominated by the second slowest decay rate, which is given in general 
by 

72.1 = l l n  A (2.28) 
r Z2 

2.3. Invar iant  Probabi l i ty  M e a s u r e  and Its Character is t ic  
Quant i t ies  

Associated with the leading resonance is an invariant probability 
measure on the whole phase space for bounded systems when A = Z1 or on 
the fractal repeller. J'he invariant measure is constructed as a probabilistic 
Markov chain on the symbolic dynamics of alphabet sJ. The correspond- 
ing transition matrix H ~  is based on the topological transition matrix A~.  
The matrix H ~  must satisfy 

.. Y' H ~ =  1, c ~ , / ~ d  (2.29) 

The invariant probability measure is then the stationary measure with 
respect to H ~ ,  i.e., 

Z 7r~H~ = 72~, with Z ~ = 1 (2.30) 
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These conditions are satisfied for (8'39) 

H~ - A ~ ~  (2.31) 
Z l ~ c ~  

where {~p~} are the components of the eigenvector 1~01> of eigenvalue Xl in 
(2.9). rt~ is given by 

q3~, q~, (2.32) 

taking the normalization into account. The invariant measure of a cylinder 
of length n is thus 

# ( C O 0 C O l  ' ' ' C O n  - -  1 )  = rc~oHo~o~,Ho~o~2"'" H~, ~o~,_~ (2.33) 

so that the dynamics on the repeller is isomorph in the sense of Ornstein {45) 
to a probabilistic Markov chain. 

Kolmogorov-Sinai (KS) and topological entropies per unit 
time. Because the system is equivalent to a Markov chain, the KS 
entropy is given by 

hKs = -- 1 ~, ~ H ~  In H ~  = 1_ In X1 = htop (2.34) 

Since the system is assumed to be uniformly hyperbolic, the KS entropy is 
equal to the topological entropy, which is defined as the rate of increase in 
the number (2.16) of periodic orbits with their period, hto p is thus given in 
terms of the largest eigenvalue Xl of the topological transition matrix A and 
the last equality of (2.34) results. 

Rue#o's topological pressure. This quantity of the thermodynamic 
formalism is defined by {2s) 

P( /? ) -  lim l l n  ~ A(coocol.--co,_l) -~ (2.35) 
n ~ o o  / ' /77 

r " " " r - 1 

in terms of the stretching factors along the itineracies COo... o9,_ 1 which are 
allowed by the topological transition matrix A. As a consequence of the 
uniform hyperbolicity, all stretching factors are equal to A", so that 

P(f l )= lira 1--ln(<llA"-'II>A " z ) = l l n z l - f l - l n A  (2.36) 
n ~ o o  F/~ T 77 

where l l> denotes a vector with all its elements equal to one. An 
equivalent definition of the topological pressure is given by continuation of 
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the smallest zero Yl,~ of the Fredholm determinant to real numbers for the 
parameter/3, i.e., 

P(/?) = _ _1 in yt.~ (2.37) 
"c 

which is identical to (2.36). The mean Lyapunov exponent is known to be 
obtained by deriving the pressure at/~ = I, 

2 =  --P'(1) (2.38) 

so that (2.3) is recovered as expected from the uniform hyperbolicity. The 
escape rate (2.27) is given exactly by 

7 =  - P ( 1 )  (2.39) 

The KS entropy (2.34) is then the difference between the Lyapunov expo- 
nent and the escape rate (a4'46) 

hKs = 2 -- ~ (2.40) 

which generalizes Pesin's formula to open systems. 

Dimensions. Because of the uniform hyperbolicity, all the 
generalized dimensions (47) of the invariant set are equal to 

In Z1 
Dq = 2dq = 2 ln---A-' Vq (2.41) 

dq is the partial dimension, i.e., the dimension of the intersections of a line 
with the stable or unstable manifolds. We find the Hausdorff dimension D H 
at q = 0 equal to the information dimension DI at q = 1. The repeller is thus 
a simple fractal, with a trivial multifractal spectrum. 

Alternatively, the partial dimension dn is also given by P ( d H ) = 0  
according to Bowen's formula. (48) d~ is also given by Young's formula as 
the ratio of the KS entropy over the mean Lyapunov exponent. (49) 

Equilibrium state. We observe that the repeller fills the whole phase 
space when A = ) ~  since (2.41) is then equal to two. In that case, the 
transition matrix of the Markov chain becomes 

1 
P~B = ~ A ~  (2.42) 
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with the s tat ionary probabilities {p~} corresponding to the uniform 
distribution. In the following, we shall denote this measure by 

P r ~ 1 7 6 1 7 6  oo~lP~o~,o2""P~,~ 2o~~ i (2.43) 

This invariant  measure shall be referred to as the equilibrium state. 

3. I N F I N I T E  C H A I N  OF C O U P L E D  BAKER M A P S  

3.1. D e f i n i t i o n  of  t h e  M u l t i b a k e r  M a p  

We construct  the mult ibaker  mapping  on an infinite chain of squares. 
The mapping  is area-preserving. The phase space is a strip of  unit height 
and extending indefinitely to the left and the right. The mult ibaker map is 
composed  of  two successive mappings 451 and ~b 2, each of  which acts over 
a time ~/2, so that  the mult ibaker  map  itself acts over a time r (see Fig. 1 ). 

The first map  ~bl is composed of  an infinite number  of baker  transfor- 
mat ions  acting on adjacent and nonintersecting squares of  unit area. These 
squares are defined to be 

{(x, y): k -  l<.x<k+ �89 0.<y < 1} (3.1) 

. . . .  2 -I 0 I 2 . . -  
t I I I I I t ~  X 

co . . . . .  5 -/* -3 -2 - I  0 I 

 liiNiil] 
sl IL i~ I t  t~ 

I iliN 1 i I71 
2 3 4... 

Fig. 1. Multibaker mapping ~ along an infinite chain. ~ is the composition of ~ followed 
by q~2. b denotes an elementary baker transformation acting on a single square of the chain 
by a vertical stretching toward positive y, horizontal cutting at y=  1, and gluing at the 
right-hand side. 
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On each of these squares, a baker transformation acts with vertical 
stretching, horizontal cutting, and gluing of the upper half to the right- 
hand side of the lower half: 

~ ,  , f (x /2+k/2-  �88 2y) 
ltX' Y) "~- ~(x/2 + k/2 + 1, 2y - 1) 

k - g ~ x < k + � 8 9  O~<y<�89 
(3.2) 

l < ~ x < k + � 8 9  � 8 9  k - g  

for all k. The second mapping 1~2 acts on the squares which are shifted by 
1/2 to the left with respect to the squares (3.1), namely 

S(2 k)= {(x, y): k<~x<k+ 1;O~<y< 1} (3.3) 

On these squares, the second mapping ~2 performs similar baker transfor- 
mations as ~ so that 

�9 2(x,y)= ~(x/2+k/2, 2y) 
((x/2+k/2+�89 2y-  1) 

1 k ~ x < k + l ,  0 ~ y < g  
(3.4) 

k ~ x < k + l ,  i ~ y < l  

for all k. The infinite multibaker transformation is then defined by the com- 
position of the mapping q~l followed by the mapping q~2. By inspection of 
Fig. 1, which shows how ~b = q5 2 o q~l acts on a square, we obtain 

((x/4+3k/4-~, 4y) 

) (x /4+3k/4-~ ,4y-1)  
q~(x,y)= }(x/4+3k/4+ k, 4y-2)  

k(x/4+3k/4+~,4y-3) 

k - l i~<x<k- t  -1, O~<y<�88 

k-�89189 �88189 

k-�89189 }~<y<l  

(3.5) 

for all k. We can verify that the infinite strip is mapped onto itself as 
expected from the global area-preserving property. 

3.2. Hyperbolicity of the Multibaker Map 

Locally, the mapping q~ is area-preserving because its Jacobian 
determinant equals one. The linear stability of its trajectories is given 
by considering its Jacobian matrix, which rules the evolution of the 
infinitesimal separations between neighboring trajectories, 

( 6x.+,']=(1/4 0~(6x.'] {6x.) (3.6) 
6y,,+,J \ 0 4 / \ b y . J - J k 6 y . )  

822/68/5-6-2 
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As a consequence, any trajectory (qs'X) is unstable of saddle type. The 
stable manifold of each periodic or nonperiodic trajectory is composed of 
segments which are parallel to the x axis, while the segments composing its 
unstable manifold are parallel to the y axis. Consequently, the infinite 
multibaker mapping is uniformly hyperbolic with a stretching factor A --4, 
as described in Section 2.1. According to (2.3), the Lyapunov exponent of 
the multibaker is thus equal to 

2 = 1 1 n 4  (3.7) 

3.3. The Inverse Mapping  and Its Reduct ion to a 1D Map  

Our purpose here is to show that the inverse mapping q~-~ is 
reducible to a one-dimensional map for the x coordinate which appears to 
drive the other y coordinate, playing a passive role. A symbolic dynamics 
will emerge naturally from this construction. 

Figure2 shows how q5 ~=q~-~o~b~ -~ acts in the phase space. By 
inspection of the geometry, we obtain the equations 

((4x -- 3k - �89 y/4 + �89 
) (4x - 3k - �89 y/4) 

~(x, y) = ) (4x  - 3k - ~, y/4 + 3) 

~(4x - 3k - ~, y/4 + �88 

k ~ x < k + � 8 8  0 ~ y < l  
k + � 8 8 1 8 9  0 ~ y < l  

k + � 8 9  0 ~ y < l  

k + � 8 8  0 ~ y < l  

(3.8) 

k-1 k k. l  
I I I 

co . . . .  2k -1  2 k  2k+' l  . . .  

,;, i0, Lb, Lb, Lb, 

I I ! [iii N 

I ~,\\ \ \ \ \ \ \ \ \~1 I 
I I I~//////////.','A 

Fig. 2. The inverse mapping ~-L of the infinite multibaker mapping of Fig. 1. 
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Fig. 3. 

~(x) 

One-dimensional map if(x) ruling the motion of the x coordinate of a point under the 
inverse multibaker mapping q> 1 of Fig. 2. 

for all k. We observe that this inverse mapping acts on the x coordinate of 
the current point X =  (x, y) like the following one-dimensional mapping: 

(~(x)=~4x-3k-�89 k<<.x<k+�89 
(3.9) 14x 3 k - ~  k +  1 ~ < x < k + l  

(for all k) which is depicted in Fig. 3. 
Let us note that the multibaker mapping is time-reversal symmetric. 

There exists a transformation T as in (2.4). T is given by an inversion along 
the diagonal of each square S~ ~) (see Fig. 4) 

T(x,y)=(y+k-�89 x-k+�89 k-�89189 0 ~ y < l ,  Vk (3.10) 

Fig. 4. 

k-1/2 k+l/2 

2 

k-1/2 k+1/2 

-1 

I 
/ / J ~/ 

Time-reversal transformation T and the geometrical proof of the invariance of 
under T. 
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3.4. Symbolic Dynamics 

According to the preceding result (3.9), we define the partition of the phase 
space into half square cells, labeling each cell as follows: 

2k l ~ { ( x , y ) :  k - 1  - ~<~x<k ,O<~y <l}  
(3.11) 

2 k ~  {(x, y ) : k < ~ x < k +  �89 0<~ y <  1} 

where 2 k -  1 is the left-hand half of the kth  cell and 2k is its right-hand 
half. The symbolic dynamics is thus constructed on the infinite alphabet, 
CO, ~ ~ '  = Z. This partition is generating in the sense that the trajectories 
are in one-to-one correspondence with the bi-infinite sequences on this 
alphabet obtained from the constraint that 2 k -  1 and 2k can be followed 
with ( 2 k - 2 ,  2 k - 1 ,  2k, 2 k +  1) only. The transition matrix of this 
topological Markov  chain is thus 

. . . .  5 - 4  - 3  - 2  

- 3  

- 2  

A =  -1  

0 

1 

2 

' . .  : : : : 

�9 - 1 1 1 

�9 . 1 1 1 

�9 " 1 

-- 1 

�9 . ; : ; : 

1 0 1 2 3 4 --- 

: : : : : : " . .  

. , .  

. . .  

1 1 1 . . .  

1 1 1 - . -  

1 1 1 1 - . -  

1 1 1 1 . . .  
: : : : : ~ " . .  

(3.12) 

where the blanks stand for zeros. 

Proof. (a) Because the cells of the partition are nonintersecting and 
fill the whole phase space, a unique symbolic sequence is given to each 
trajectory by recording the successive cells of the partition which are visited 
during its time evolution under qs, ( t E Z )  and from its initial condition 
(x, y). 

(b) Let us suppose that the bi-infinite sequence ~ is compatible with 
the symbolic constraint (3.12) of the topological Markov chain. The initial 
condition (x, y) of the corresponding trajectory belongs to the cell ~o o. 
From Fig. 1, and because col is linked to COo by the symbolic constraint, we 
see that the knowledge of ~ol allows us to choose the only horizontal 
quarter of cell c~ o to which (x, y) belongs. The main point here is the fact 
that there is no ambiguity in the choice between several quarters in cell COo. 
Similarly, we observe in Fig. 2 that CO i selects one and only one vertical 
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quarter in the cell co o. Therefore, the knowledge of co l" coOcol restricts the 
set of initial conditions to a unique rectangle of area 1/32 inside coo. By 
recurrence, the cells co , . . .co,  form a unique sequence of rectangles of area 
1/(2 x 16') which are embedded into each other and which converges to a 
unique point which is the initial condition of the corresponding trajectory. 

3.5. Reducing the  Dynamics  to a Latt ice Cell 

Exploiting the translational invariance of the dynamical system along 
the x axis, we can reduce the dynamics to a single cell of the lattice, 
together with a function on this reduced phase space which counts the 
jumps to the left or to the right. The whole dynamics along the chain can 
be decomposed into a dynamics inside a fictive cell of the lattice running 
along the lattice with the trajectory and composed with the jumping 
dynamics. Returning to Fig. 1, we see that the dynamics is reduced to a 
single cell of the lattice if the left-hand vertical quarter which belongs to the 
left-hand neighboring cell is placed on the right-hand blank quarter and 
similarly for the right-hand quarter (see Fig. 5). The reduced mapping ~r 
is thus 

((x/4 + 
~(x/4 - 

~ ( x ,  y) = / ( x / 4  + 

L ( x / 4  - 

~,4y) - � 8 9  +�89 O ~ y < � 8 8  
l _ i < y < 1  g, 4 y -  1) 1 ~ x <  +�89 ~ 5 
1 4y--2)  1 i 3 ~ < x <  +} ,  g, -- _ i~<Y<a 

L4y-3) 

(3.13) 

The jumping dynamics is obtained by the history of the trajectory from 
initial condition (x, y), Cb'r(X, y), counting the Passages by the aforemen- 
tioned lower and upper quarters. Is+(X) and Is_(X) denote the indicator 
functions of the cells defined by 

= l 3 < y < l  } s+ {(x,y):- +�89 a 

s ={(x,y):- +�89 o.<y<�88 
(3.14) 

1 1 

-1/2 0 1/2 -1/2 0 1/2 

Fig. 5. Reduced cell mapping Jr- Here S+ (R+) denote the rectangles of the jump dynamms 
under 45 (~-1). 
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A trajectory of the complete system is then reconstructed from the cell- 
reduced dynamics according to 

t - - l  t 1 
x , - x ( ~ ' X ) = x ( q , ' r X ) +  ~ I s + ( ~ T X ) -  ~ Is_(~TX) ( t > 0 )  (3.15) 

m =0 m =0  

As for the complete time-reversed mapping (3.8), the time-reversed reduced 
mapping acts on the x coordinate of the current point X =  (x, y) according 
to a one-dimensional mapping ~br which is depicted in Fig. 6. An expression 
similar to (3.15) holds for negative times, replacing S+ by the time- 
reversed domains R+_ shown in Fig. 5. 

The preceding considerations lead us to introduce a velocity as the dif- 
ference between the x coordinates of two successive points of a trajectory, 

v( q~ X) = x( O X) - x( X) = x( ~b rX) - x( X) + I s + ( X) - I s_ ( X) 
(3.16) 

V((~ - - l X )  = X((~ j 1X) - -  x ( X )  = X((~r  - 1X) - -  x(X)  + IR+(X) - IR_(X) 

so that we have 

x ( X , ) = x ( X o ) +  k V(Xm) (3.17) 
rn--1 

Let us here mention that the reduced dynamics in a single lattice cell 
is a closed dynamical system of Bernoulli type on a symbolic dynamics 
with four symbols with probabilities (~, �88 �88 �88 Consequently, it is ergodic, 
mixing, and of Kolmogorov type. Its Kolmogorov Sinai entropy is 
(1/v) In 4, as expected. (lil 

3 . 6 .  D i f f u s i o n  

In this subsection, we take v = 1 unless otherwise stated. Diffusion 
takes place along the chain of baker transformations. We define the 
diffusion coefficient by 

1 
= tlimov~ ~ < [ - x ( ~ t X )  - -  x ( X ) ]  2 > 

Fig. 6. 

(3.18) 

~ (x) 

/2 

-1/2 

One-dimensional mapping ~r ruling the motion of the x coordinate of a point under 
the inverse reduced cell mapping ~-1 of Fig. 5. 
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where ( . 5  denotes an average over an ensemble of initial conditions 
uniformly distributed over one lattice cell, which is the equilibrium measure 
of the cell-reduced dynamics. 

The diffusion coefficient can be evaluated by different methods. The 
first one uses a direct evaluation of (3.18). Denoting Xt-q~t,X, we obtain 

<Ex(X,)-x(Xo)]2)=~--~ 1 -  (3.19) 

so that 

= 1 ( 3 . 2 0 )  

If we suppose that the unit cells of the chain have a size a while an iteration 
is performed in a time z, the diffusion coefficient acquires its physical units 
and reads @ = (aZ)/(4z). 

The Green-Kubo formula/5~ 

C(O). L C(m) (3.21) 
~'~ : - - 2 -  - f  m = 1 

is of application for the present system, where C(t) is the autocorrelation 
function of the velocity (3.16) given by 

3 1 
C(t) =- (v(CbtX) v(X)) - 8 x 4 Itl 8 6,o (3.22) 

so that C(0)=  1/4. Accordingly, we recover the diffusion coefficient (3.20). 
The velocity autocorrelation function is drawn in Fig. 7. The relaxation is 
here exponential and there is no long tail in this system. 

The spectral function of the velocity autocorrelation function (3.22) 

+~ 1 7 + 2  cos co 
S(co)=_ ~ e-i~"C(n)=217-8cosco (3.23) 

n ~  - - o c  

C(t) 

1/4 

I I I I r I I I 

-4 -3 -2 -1 0 1 2 3 4 
t 

Fig. 7. Veloci ty au toco r re l a t ion  funct ion C(t). 
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Fig. 8. 

0.5 

s(c0) 

0 
-re/2 0 re/2 Tc 

03 

Fourier transform of the velocity autocorrelation function. We observe the effect of 
the resonances at co = +i  In 4. 

is shown in Fig. 8. The diffusion coefficient is then given by the value of the 
power spectrum at zero frequency N = �89 We note that the spectral 
function presents two poles at co = _+i In 4 in the cylinder - ~  ~< Re co < +~ 
of the complex plane of the variable co. 

The existence of the diffusion coefficient for the multibaker chain and 
the mixing property for the lattice cell dynamics guarantees a central limit 
theorem for the random variable which is the x coordinate of the running 
particle: 

[ ( 2 ~ t )  1 / 2 ~ "  x t - x  o } (2~) a/z1 u Pr < u - f e -y2/2 dy (3.24) 
(30 

where Pr is the Lebesgue measure on the lattice cell. (51) This theorem is 
proved by methods developed by Doob (52) and Ibragimov. (53) Via a scaling 
limit, we infer from (3.24) that x, follows a Brownian motion, in the sense 
that ex~2, converges to a Wiener process of diffusion constant ~ when 

"+ 0.  (25,54) These results justify the use of the phenomenological diffusion 
equation 

# , f =  ~ a ~ f  (3.25) 

However, we shall see in next sections another approach where the classical 
Liouville dynamics is exactly solved, and which leads to a stronger corre- 
spondence between both dynamics based on the spectrum of complex 
resonances. This approach makes an explicit use of the detailed chaotic 
dynamics and, in this way, preserves the chaotic properties which are lost 
in the scaling limit ~ ~ 0. Indeed, the Wiener process generates erratic 
trajectories which are self-similar on arbitrary small scales. This feature can 
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be characterized by the entropy per unit time of the dynamical process with 
respect to a partition into cells of size e, which is called an t-entropy per 
unit time. ~5s'56l Because of its self-similarity, the t-entropy of the Wiener 
process diverges like h( t ime) ( e )  ~ 1/e 2 as e ~ 0 .  (55'56) However, since the 
multibaker map is a deterministic hyperbolic system, its entropy per unit 
time with respect to an t-partition has a supremum at the KS entropy per 
unit time, namely In 4/z. Since the trajectories of the multibaker map 
behave like those of a Wiener process only in the large-scale limit, we 
conclude that the e-entropy per unit time of the multibaker map never- 
theless decreases like 1/e 2 in the limit e ~ a after a crossover around e ~ a. 
This behavior is depicted in Fig. 9. Consequently, there cannot be an 
isomorphism in the sense of Ornstein (45l between the Wiener process and 
the multibaker map because the entropy per unit time of the latter is over- 
evaluated in the Wiener process at small e < a. To avoid this fundamental 
problem common to each kinetic theory based on some scaling limit, we 
must preserve the chaotic character of deterministic systems, which is done 
in the theory developed in Section 2. 

We summarize the preceding results as follows. We showed that the 
mean square displacement of the particles grows linearly with time, which 
defines the positive diffusion coefficient. We obtained a Green-Kubo 
formula for the diffusion coefficient in terms of the velocity autocorrelation 
function, which decays exponentially. As a consequence, the system 
presents no long tails, the power spectrum, i.e., the Fourier transform of 
the autocorrelation function, is continuous, and the dynamical fluctuations 
are Gaussian. These properties are to be compared to other systems with 

log h(tlme)(E) 

1/[3 2 

log hK s-~. " ' ~ /  

log 

Fig. 9. a-entropy per unit tilne for the infinite multibaker mapping. When ~ is much larger 
than the lattice cell a, this decreases like 1/r 2 because the motion is Brownian on a large scale. 
The deterministic dynamics appears on small scales ~ ~< a where the finite KS entropy per unit 
time (1/~)In 4 is recovered. On small scales, the kinetic theory (dashed line) overestimates the 
entropy per unit time. 
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diffusion. In the Lorentz gas in a periodic array of hard disks fixed in 
the plane and with a finite horizon, such as the triangular lattice, (26~ the 
velocity autocorrelation function is known to decay as a stretched 
exponential, so that this system presents no long tail, has a positive diffu- 
sion coefficient, and has Gaussian dynamical fluctuations. ~25) Accordingly, 
in spite of several important differences, the multibaker chain presents 
some properties also found in the Lorentz gas with a finite horizon. Deter- 
ministic diffusion has also been studied in one-dimensional maps, where the 
present methods can be applied. ~57 60) 

To conclude this section, let us remark that the present multibaker 
chain is a model of space-time chaos as described in the introduction. Here 
hKs = l n 4 / z  is the data accumulation rate necessary to reconstruct the 
trajectory of a single particle according to the Shannon-McMillan- 
Breiman theorem. ~12) If a density of particles is present on the system, the 
data accumulation rate to follow many particles is proportional to the 
number p of particles per unit length. We can then define an entropy per 
unit time and unit length--as done previously by Goldstein eta/ .  (16)- 
to describe the dynamical randomness of this system composed of many 
independent particles, 

h (rime'length) = phKs = P in 4 (3.26) 
T 

The present model is thus able to sustain a process which is chaotic in 
space and time as in the hard-sphere gas. Although devoid of properties 
like temperature or heat conductivity, the multibaker chain is typical of 
space-time chaos. 

4. FRACTAL REPELLERS IN THE CLOSED AND 
FINITE MULTIBAKER CHAIN 

The purpose of this section is to show that fractal repellers appear in 
nonequilibrium problems for closed and isolated systems. We shall here 
consider a bounded variant of the infinite mapping of Section 3 in which 
particles cannot escape from a chain of length L. With this aim, a baker 
transformation acts on the two half-squares which remain at the two ends 
of the chain. 

4.1. Definition of the System 

The phase space is the strip of height 1 extending from - 1 / 2  to 
L + 1/2 along the x axis. As in Section 3, the mapping is composed of two 
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submappings, q~l followed by ~2. During the first map, a baker trans- 
formation with vertical stretching, horizontal cutting, and gluing at right 
hand acts on each of the L +  1 squares (3.1) with k =0,  1, 2 ..... L. The first 
mapping &l then takes the same form as (3.2), but here for k = 0, 1, 2 ..... L. 

During the second mapping r a baker transformation acts on the L 
squares (3.3) with k = 0, 1, 2 ..... L -  1 which are shifted by 1/2 to the left 
with respect to the squares (3.1) and still contained in them. On the 
remaining part of phase space, namely on the two rectangles 

~ (  1 ) =  { ( x , y ) :  - � 8 9  

I .  _~ S(2L)= {(x,y): L <~x <L +g,O,~ y < l  } 
(4.1) 

the second mapping q~2 acts as a baker transformation, so that we can 

'/'2(x, y) = 

write 
'(x/2 - �88 2y) 

(x/2, 2 y -  1) 

(x/2 + k/2, 2y) 

(x/2 + k/2 + �89 2y - 1) 

(x/2 + L/2, 2y) 

(x/2 + L/2 + �88 2y - 1 ) 

1 - � 8 9  O ~ y < ~  
- � 8 9  � 8 9  

1 k ~ X < k + l ,  O ~ y <  5 
k=O,  1 ,2 , . . . ,L -1  

k ~ x < k + l ,  � 8 9  

k=O,  1,2 ..... L - 1  

L ~ x < L + � 8 9  0 ~ y < � 8 9  

L ~ x < L + � 8 9  � 8 9  

(4.2) 

The finite multibaker transformation is then defined by the composi- 
tion of the preceding mappings, (b = r 2 o r 

x /4_3 ,4y)  l < x <  + l ,  0 ~ < y < a  

I (x/4 + 3k/4 5 i 1 --~,4y)  k - 5 ~ < x < k + � 8 9  0~<y<~ 

k = 1 , 2 , 3  ..... L 

x/4+3k/4 ~ , 4 y - 1 )  k- �89189 l<~y< 5 
k = O, 1, 2, 3,..., L 

q S ( x ' Y ) = i ( x / 4 + 3 k / 4 + ~ ' 4 y - 2 )  kk-�89189 1,2,...,L i �89 

I (x/4 + 3k/4 + ~, 4y - 3 ) k - 1  1 3 <~ y < l 5 ~ < x < k + ~ ,  
k = 0 ,  1, 2 , . . . ,L-  1 

~<~x<L+~, a<~y<~ ~ ( x / 4 + 3 L / 4 + ~ , 4 y - 3 )  L - 1  1 3 1 

We can verify that the image of the domain 
as required (see Fig. 10). The mapping is 
stretching factor equal to 4. 

(4.3) 

covers the whole phase space 
uniformly hyperbolic with a 
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-1/2 0 

i i  
1 2 

I I I I I 

L L + 1 / 2  

I '. 

CO= 

"////////A 

liNi~i~4iiiii~] 

W//////////A 
~\\\\\\\\\"kr 

b lb lb [b lb 

- 2 - 1 0  I 2 3 4 5 6 7 89 

+ 

Fig. 10. Multibaker mapping r for a finite chain of length L = 4. r is the composition of r 
followed by r b denotes an elementary baker transformation acting on a single square of 
the chain. Inside the chain, the mapping is the same as for the infinite chain. However, the 
particles are reinjected inside the chain at both ends where two baker transformations b' act 
on both half-squares. 

The  m a p p i n g  ~b is a rea-preserv ing  because  its J acob ian  de te rminan t  
equals  one everywhere.  

As previously,  th.e inverse m a p p i n g  r 1 6 2  acts on the x 
coord ina t e  of  the cur ren t  po in t  l ike the one-d imens iona l  m a p p i n g  

r  = 

__ I < X  < 1 e4x + 3 

1 l < x <  0 4 x + ~  - - ~  

4x-3k- �89  k<~x<k+�89 k = O ,  1 ,2  ..... L - 1  

5 k+�89 k = 0 , 1 , 2  ..... L - 1  4 x -  3 k -  

4x-3L- �89  L<~x<L+�88 
4x-3L - 3  L+�88189 

(4.4) 

which is depic ted  in Fig. 11 for L = 4. Accord ing  to this figure, we here 
define a pa r t i t i on  of phase  space as follows: 

2k~-+ {(x,y):k<~x<k+�89 0 ~ < y <  1} 

2 k +  1 ~ {(x, y):  k+ �89 1, 0~< y <  l}  
(4.5) 
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// , 

-1/2~ ~ L+',2 x 

Fig. 11. One-dimensional mapping ~b(x) ruling the motion of the x coordinate of a point 
under the inverse multibaker mapping cb i of Fig. 10. We note that the stretching factor is 
everywhere equal to 4. 

for k = 0, 1, 2 ..... L -  1 and, furthermore, with the four rectangles of width 
1/4, 

- 2  ~--~ {(x, y): - �89 - �88 0~<y< 1} 

- I  ~ {(x, y): - �88 0~<y< 1} 
(4.6) 

2L*--~ {(x,y):L <~x <L +�88 

2L+ 1 ~  {(x, y): L+�88189 0~<y< 1} 

The partition is generating in the sense that there is a one-to-one corre- 
spondence between the points of the trajectories of the system and the 
dotted bi-infinite sequences of the symbolic dynamics on the 2L + 4 
symbols 

(o, e d  = { - 2 ,  - 1 ,  0, 1,..., 2L, 2 L +  1} (4.7) 

The symbols e), themselves follow with constraints according to the 
(2L + 4) x (2L + 4) transition matrix of the topological Markov chain, 

10 e : - 2 ;  /~ = -2 ,  - 1 ,  0,1 
c ~ = 2 k - l ,  2k; / ~ = 2 k - 2 , 2 k - l , 2 k ,  2 k + l  (k=  0,1, 2,..., L) 

A, r  c ~ = 2 L + l ;  / ? = 2 L - 2 , 2 L - 1 , 2 L ,  2 L + l  

otherwise (4.8) 
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v.//////////~ i/~ ~ ~/f~ 

L* 1r 
/ /  

T 
| :, | 

[ L I 

Fig. 12. Geometrical proof that the finite multibaker mapping q5 is invariant under the 
time-reversal transformation T. 

For L = 4, the transition matrix takes the form 

- 2  

- 1  

0 

1 

2 

3 
A =  

4 

5 

6 

7 

8 

9 

As before, the 
tion (3.10) for k =  

- 2  -1 

1 1 

1 1 

1 1 

0 1 

1 1 

1 1 

1 1 

1 1 

1 1 

2 3 4 5 6 7 8 9 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

(4.9) 

1 1 

1 1 

1 1 1 

1 1 1 

1 1 t 

mapping �9 is time-reversal symmetric under the involu- 
0, 1, 2 ..... L (see Fig. 12). 

4.2. Classical Resonances 

A Koopman unitary operator corresponds to the mapping (4.3) for 
the closed and finite multibaker chain. This evolution operator has a 
continuous real spectrum because the mapping q~ is of Kolmogorov's type 
from the preceding considerations. (u) U has a single eigenvalue, which 
is 1, corresponding to a constant function on the phase space. When the 
evolution operator is extended, it acquires resonances which appear in 
the complex plane away from the unit circle. These resonances can be 
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calculated by the method of Section 2.2 based on the Fredholm determi- 
nant Of U. Relations (2.18)-(2.25) apply here with the matrix A now given 
by (4.8)-(4.9). 

We have the eigenvalue problem (2.19) for A with eigenvectors of the 
form 

1@) = (U l ,  V 1' UO' VO' U l ' V l  . . . . .  U L - - 1 ,  VL-1, UL, VL) T (4.10) 

The equations are 

u _ ~ + v  ~ + U o + V o = Z  u 1 

blk 1 -1- blk 1 -~- Uk "Jr I) k = )~D k _ 1 ~- )~Uk 

UL l "~- /)L 1 -[- UL "~ VL ~-- Z/)L 

(k=0,  1,2 ..... L) (4.11) 

For the nonvanishing eigenvalues, we have that U k = V k _ l  and the 
equations become 

Uk I + 2 U k  + Uk + I = Z U k  

with the boundary conditions 

U 1 ~ b/0 

blL = blL + 1 

(k=0,  1,2 ..... L) (4.12) 

(4.13) 

Assuming that the elements have the form 

u k = a C o s k O + b s i n k O  (k= -1 ,0 ,  1,2 ..... L) (4.14) 

the eigenvalues are then given by 

Z = 2 + 2 cos 0 (4.15) 

We obtain the eigenvalue condition 

sin[(L + 1)0] = 0 (4.16) 

so that the angle 0 takes the values 

mTr 
0m= for m=0 ,  1, 2,..., L +  1 (4.17) 

L + I  

Because the system is bounded, the eigenvalue Z = 4 corresponding to the 
angle 0 = 0 is here the largest eigenvalue. We observe that the largest eigen- 
value is thus equal to the stretching factor A = 4 of the system, so that the 
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important condition (2.26) is here satisfied. This equality arises because 
the present system is closed and thus has a vanishing escape rate. 

According to (2.24)-(2.25), the decay rates are then exactly 

y,~.~= l n 4 - 1 1 n  2+2cos  (4.18) 
z L + I  

The decay modes (m >i 1) are 

Uk=Vk l=sin[(k+l)O]-sinkO ( k = - 1 , 0 , 1 , 2  ..... L + I )  (4.19) 

and the eigenmode m = 0 is the constant function. 
For a large multibaker chain, the family of slowest decay rates for 

f l = l  is 

1 In 2 - @ + (9(L 3) (4.20) 
Y'~'I = ~ l+cos[mn/(L+l)] 

where ~ is the diffusion coefficient calculated in Section 3. We observe that 
these relaxation rates that we exactly derived from the Liouville dynamics 
of the system approach the decay rates calculated from the phenomenol- 
ogical diffusion equation (3.25) solved for the boundary condition of zero 
flux at the ends of the chain, 

~xf=O at x=O,L (4.21) 

at any time. The general solution of (3.25) with (4.21) is 

f(x, t)= cm exp - ~  t c o s - -  (4.22) 
m=O L 

so that the decay rates obtained phenomenologically are 

7~h)=~  ( - ~ )  2 (4.23) 

For a large system, the approximate decay rates (4.23) of the pheno- 
menological equation converge to the exact ones (4.20). The approximate 
rates are slightly different from the exact ones by a small quantity of 
order L -3. Besides this nice correspondence between the decay rates, we 
observe that the eigenvectors of the Liouville dynamics show the same 
shape as the corresponding phenomenological eigenmodes (see Fig. 13). 
This is one of the most important results of the present paper. Solving a 
phenomenological irreversible equation like the diffusion equation is a 
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7 0 = 0  

T~ = 0.00024 

"f2 = 0.00097 

3' 3 = 0.00218 

L = 1 0 0  

i i i i i i i i i 

1 0 0  

X 

Fig. 13. Decay modes of the closed and finite multibaker mapping along a chain of length 
L = 100. They correspond to the family /~ = 1 (m ~> 1) of complex resonances, m = 0 is the 
constant  eigenmode corresponding to the real eigenvalue 1 of the Koopmann  operator. 
The values on the left column give the corresponding decay rates for z = 1. 

cheap method to find the complex resonances of the Liouville dynamics. 
This result provides a more precise justification of the use of kinetic 
equations in nonequilibrium problems than the scaling-limit theories can 
provide. The property of dynamical chaos plays here a fundamental role in 
the existence of the complex resonances. Further comments about this 
correspondence at the level of the resonance spectrum will be given in the 
next section. 

According to Section 2.3, the dynamics of the closed multibaker is 
isomorph to a probabilistic Markov chain. Because the eigenvector corre- 
sponding to the eigenvalue X=4 is the constant vector, the invariant 
probability measure is (2.43) with the transition matrix and the stationary 
probability given by 

P ~  = �88 

= f 1 / ( 2 L + 2 )  e = 0 , 1 , 2  ..... 2 L - 1  (4.24) 
P~ [1 / (4L+4)  ~ = - - 2 , - 1 , 2 L ,  2 L + l  

The topological pressure is here 

P(fl) = In 4 (4.25) 

so that the Lyapunov exponent equals the KS entropy 2 = hKs = (l/z)In 4. 
The invariant set fills the whole phase space with its Hausdorff dimension 
given by DH = 2. The invariant measure is the uniform distribution on 
which defines the equilibrium thermodynamic state of the system. 

822/68/5-6-3 
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4.3. A Fractal Repeller for Each Nonequilibrium State 

Thermodynamic equilibrium is the stage of many dynamical processes, 
but they are dormant because time-reversed processes are equiprobable. 
To reveal these nonequilibrium dynamical processes, we must carry out 
observations over a finite time interval. As a consequence, we select 
trajectories which satisfy certain conditions imposed by the nature of the 
problem. Absorbing boundaries like those considered in first-passage 
problems in Kramers rate theory (6~) are placed in phase space. Trajectories 
are eliminated as soon as they reach the absorbing boundaries. Since all 
trajectories of a chaotic system are unstable, most trajectories escape from 
the domain delimited by the boundaries, leaving only a set of trajectories 
of zero Lebesgue measure, which, in general, is a Cantor set. Accordingly, 
the absorbing boundaries and the development of a rate theory in a 
deterministic context, as done here, lead to the construction of a fractal 
repeller of trajectories satisfying the given nonequilibrium condition. 

Several type of nonequilibrium conditions can be considered according 
to whether (1) one or several independent particles are present in the system, 
(2) the absorbing boundaries can be represented with strings containing 
one or several symbols of the symbolic dynamics, or (3) trajectories have 
to spend a given sojourn time in a domain. 

In each case, a large-deviation formalism ~62) can be developed to 
solve the nonequilibrium problem and calculate the escape rate from the 
corresponding fractal repeller, which is the ultimate goal of the theory. 

In the following subsections, several examples of nonequilibrium 
conditions will be considered. 

4.4. One-Particle, One-Symbol Nonequilibrium Conditions 

4.4.1. Absorbing-Absorbing Boundaries. Suppose that we 
observe the diffusive transport out of a part of the multibaker chain. We 
place two absorbing boundaries at x = k and x = k + l and we select all the 
trajectories which stay forever in the domain 

~={k~x<k+l,O~y<l} (4.26) 

for given integers k and l such that 0 ~< k < l ~< L. We shall show that the 
rate of escape out of this domain is related to the diffusion coefficient when 
l is large. The trajectories of the so-defined invariant set are in one-to-one 
correspondence with bi-infinite sequences composed of the symbols 

~,, ~ {2k, 2k + 1,..., 2k + 21 -  2, 2k + 2 l -  1 } (4.27) 
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These symbolic sequences must furthermore satisfy the transition rules 
of the matrix (4.9) of the topological Markov chain. Gathering these 
conditions, we define a new topological transition matrix 

B~ =- A~A~BA ~ (4.28) 

where 

10 ~ = 2 k  ..... 2 k + 2 l - 1  
A ~ = otherwise 

(4.29) 

represents a projector onto the domain "U. The transition matrix B is a 
2/x 2l matrix which takes the following form when k = 3  and l =  5: 

8 9 10 11 12 13 14 15 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

6 7 

Jl 1 

1 1 

1 1 

B =  

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 

1 1 1 1 

1 1 1 1 

1 1 1 1 

1 1 1 1 

1 1 

(4.30) 

These conditions define a new topological Markov chain which is a 
subshift of the original symbolic dynamics. 

The decay rates of the corresponding fractal repeller ( 4 )  are 
calculated by solving the eigenvalue problem (2.19) with the matrix A 
replaced by B. The equiations are similar to (4.11)-(4.12) but with the 
boundary conditions 

u l + u 0 = 0  
(4.31) 

u t + u t + l = 0  

replacing (4.13). 
Using the same method as in Section 4.2, we obtain the decay rates 

given by Eq. (4.18) but here with L replaced by l and, more important, 
with the integer m running from m = 1 to m =/.  The value m = 0 is not 
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allowed here because it is not compatible with the absorbing boundary 
conditions. For a large domain ~ ,  the slowest decay rates have an expan- 
sion like (4.20) with the diffusion coefficient calculated in Section 3. As in 
Section 4.2, the exact relaxation rates of the Liouville dynamics of the 
system approach the decay rates calculated from the phenomenological 
diffusion equation (3.25), but now with absorbing boundaries, as a calcula- 
tion similar to (4.22)-(4.23) shows. We also observe that the eigenvectors 
of the Liouville dynamics have the same shape as the corresponding 
phenomenological eigenmodes for absorbing boundaries (see Fig. 14). We 
conclude that the correspondence between the decay rates of the Liouville 
dynamics with those of the phenomenological equation can be performed 
here also in nonequilibrium problems. 

The invariant measure is given by (2.31)-(2.33) and the Ruelle 
topological pressure is here 

~ ) - /3 In 4 (4.32) P(fl)=-llnz 2 + 2 c o s ~  "c 

so that the escape rate is 

~ ( ~ ) =  _ p ( 1 ) = l l n  2 = 9  -~- (Q(l 3) (4.33) 
V 1 + cos[-~r/(l+ 1)] 

The Lyapunov exponent is here also given by (ln4)/z, while the KS 
entropy per unit time now has a different value 

l ln  2 + 2 c o s  
h K s ( ~ )  = ~ ( ~ / )  - -  ) ' ( ~ )  = "c (4.34) 

[, = 50 

Fig.  14. 

y~ = 0.00095 

'~2 = 0.00380 -, 'f--- - -  - -  ~ 

= 0.00855 Y3 

0 100 
X 

D e c a y  m o d e s  o f  t he  f r ac t a l  r epe l l e r  g e n e r a t e d  b y  t w o  a b s o r b i n g  b o u n d a r i e s  a t  

x = k = 20  a n d  x = k + l = 70 ( l  = 50),  t o g e t h e r  w i t h  the i r  e s c a p e  r a t e  (z = 1 ). 
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which equals the topological entropy. The Hausdorff dimension of the 
fractal repeller is here smaller than 2 (see Fig. 15) 

Dr~(~) = In 2 + 2 c o s / - ~  4 In 2 + (9(/-3) (4.35) 

and the selected trajectories form a set of zero Lebesgue measure, as 
required by the instability of the system. For  l reaching the boundaries 
of the system L or for large l in a very large system L, the Hausdorff 
dimension converges to the value 2, meaning that the repeller fills the 
whole phase space in this limit. 

We have the further important result that a relationship can be estab- 
lished between the diffusion coefficient and the difference between the 
Lyapunov exponent and the KS entropy of the nonequilibrium fractal 
by using (4.33) together with (4.34). The diffusion coefficient can therefore 
be calculated from the characteristic quantities of chaos in the limit of a 
large system as follows: 

= lira [ 2 ( ~ )  - hKs(~)]  (4.36) 
l ~  

This formula has been the object of a recent letter, (9~ where it was described 
in the context of the Lorentz gas of finite horizon. In the multibaker chain, 
this formula is proved with a control of the limit l-~ oo. We shall make 
further comments in Section 5. 

4.4.2. R e f l e c t i n g - A b s o r b i n g  Boundar ies.  Another nonequi- 
librium problem is obtained by requiring that the particle remains forever 
in the domain 

~//~= ( -  �89 <~x <l;O~ y< 1} (4.37) 

3 Dn(F l ) 

/ 
1 

l 
0 I I i ~ I i I 

1 2 3 4 5 6 7 

Fig. 15. Hausdorff dimension of the fractal repeller generated by two absorbing boundaries 
at x=k and x=k+  l in the closed and finite multibaker mapping. As l increases, D n 
converges to the phase space dimension 2. 



708 Gaspard 

with l~< L. In this case x = -1/2 is a reflecting boundary, although x = l is 
an absorbing boundary. The topological transition matrix is here defined 
by (4.28) with 

{;  c~= - 2 , - 1 ,  0, 1,..., 2 l - 1  (4.38) 
A~ = otherwise 

The transition matrix B is a (2/+ 2)x (2l+ 2) matrix ending like (4.9) at 
the left-hand boundary but like (4.30) at the right hand boundary. The 
boundary conditions for an eigenvector like (4.10) are now 

U _ I ~ U  0 

(4.39) 
u t + u l + l = 0  

The scattering resonances of the present fractal repeller (4)  are 

7 m . # = ~ l n 4 - ! l n ( 2 + 2 c o s ( m + l / 2 ) T z ]  1-+l J (4.40) 

The same remark as before applies here also about the correspondence 
with the phenomenological diffusion equation. In particular, the escape rate 
behaves like 

~ ( ~ ) =  _p(1) = l l n  2 (Tz) 2 
z 1 + cos[~/(2l+ 2)] - ~  

+(_9(I - 3  ) (4.41) 

Figure 16 shows how the reflecting boundary at x = - 1 / 2  induces this 
doubling of the wavelength of the slowest eigenmode and the corre- 

[, = 50 

7o = 0.00024 

"fl = 0.00214 

T2 = 0.00593 

. L _ _ ~  

i i i t i i i i i 

lOO 
X 

Fig. 16. Decay modes of the fractal repeller generated between the reflecting wall at 
x = - 1 / 2  and an absorbing boundary at x = / = 5 0 ,  together with their escape rate ( z=  1). 
Comparison with Fig. 14 shows the doubling of the wavelength due to the replacement of an 
absorbing by a reflecting boundary. 
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sponding reduction by a factor four of the escape rate. The Hausdorff 
dimension of the fractal repeller is here 

DH(~)=i-n--~ln 2+2cos2-  ~ =2- -4 - -~n  2 ~ +(9(l 3)(4.42) 

so that this fractal repeller behaves with l in a way similar to the preceding 
one. 

4.5. One-Particle, Several-Symbol, Nonequilibrium Condition 

When the absorbing boundaries imposed in the experiment do not fall 
at the border of the cells of the generating partition, several symbols are 
required to express the nonequilibrium constraint. In general, if the domain 
is expressible in terms of strings with n symbols, the topological transition 
matrix B will be 

(4.43) 
The projector A~x~2 ..... is defined by 

A _ { 1  ~ 2 - - - ~ .  e~4 (~) 
~ ;  ..... = 0 otherwise (4.44) 

where d (~) is the set of strings of length n defining the admitted domain. 
6#= is the usual Kronecker symbol. The matrix B is typically a ln x l "  
matrix which is much larger than in the preceding examples. 

As a simple example, let us consider the trajectories which stay forever 
in the domain depicted in Fig. 17. The relaxation rates are 

71,~ = -fl in 4 - 1 ln(1 + xf2) (4.45) 
T T 

72.a = -fl In 4 - _1 ln(x/~ _ 1) - ire (4.46) 
"C T T 

6.5 8.6 

5-5 7-6 

6.6 6.7 

5.6 5.7 

3 4- 5 6 7 8 9 

Fig. 17. Domain of the multibaker chain defined with strings of 2 symbols. Trajectories 
which are indefinitely trapped in this domain form a fractal repeller (see text). 
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with an example of a complex rate. The escape rate and the Hausdorff 
dimension are 

1 
7 --- 0.505 - ,  DH -- 1.272 (4.47) 

"C 

Because the fractal repeller extends over a small number of cells of the 
system, the escape rate gives a lifetime of the order of a microscopic time 
scale here. If we had considered a macroscopic domain, the lifetime would 
have been macroscopic. 

4.6. O n e - P a r t i c l e  Cond i t ion  on the  M e a n  So journ  T i m e  in a 
D o m a i n  

For simplicity, z = 1 in this subsection. In the preceding examples, the 
trajectories were eliminated at the first iteration for which the chosen 
domain was left. Other nonequilibrium constraints can be envisaged where 
the particle is allowed to leave a domain for a while and to come back 
repetitively later, so that the mean sojourn time in ~ is a given fraction of 
the total time of the experiment. 

Let ~"  be a arbitrary domain in the phase space J/g and 

1, X e ~  (4.48) 
I ~ ( X ) =  0, otherwise 

be its indicator function. The fractal repeller is here defined as 

;F(~) = {X~ J/g: 1 ' ~  1 } - I v ( ~ ) ' X  ) --+ c~, for t ~ oo 
tn=o  

(4.49) 

A similar problem was considered by Billingsley (12) for the dyadic expan- 
sion of real numbers of the unit interval as shown in the Appendix. The 
following developments generalize his results to large systems of statistical 
mechanics. 

We introduce the set 

{ } 1~,(c~) = X e  Jg: ~ I ~ ( ~ n x )  e (C~, ~ + de)  (4.50) 
n ~ 0  

and we define a nonpositive function F(~) by (62) 

Vrob{/~t(~) } = C(~; t ) e  tF(~) d~ (4.51) 
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where Prob is the equilibrium probability measure (2.43)-(4.24), i.e., the 
uniform distribution in the phase space Jg. Here C(cr t) is a prefactor, 
which plays no essential role in the following considerations. From the 
definition (4.5l), F(~) appears to be the escape rate from the set /~(~) of 
trajectories 

= -F (~ )  (4.52) 

A generating function G(/3) is defined by 

i t--1 / G(/3)- lira -lln exp/3 ~ I~_(q0"X) (4.53) 
t ~ o  t n=0 

were ( . )  denotes the average over the equilibrium measure Prob. The 
generating function is related to F(~) by a Legendre transform according to 

G(/3) = F(cQ +/3c~ (4.54) 

where 

dF dG 
/3 = d7 or ~ = dfl (4.55) 

The topological pressure (2.35) of the set ~(~) of trajectories is defined by 

p(q)  lim l l n  • - -qt  = 4 Ao~oo~JAo~l~2""A~, 2~,-1 (4.56) 
t~cx9 t 

c o o - - ,  m r -  t r ~ t (  o~ ) 

According to the definition (4.24) of the equilibrium measure, we have the 
relation 

2 
Prob{ Et(~) } _ L +  1 4 tA~o~IA~,o2...A~,_~,_~ (4.57) 

~o0.--o)f l~)'r(~) 

up to a small correction of order 1/L 2. The same sum as in (4.56) appears 
in (4.57). Comparing with (4.51), we obtain 

P(q) = F(a) + (1 -- q) In 4 (4.58) 

We emphasize that ~ in (4.58) is the parameter characterizing the set (4.49). 
The formula (4.58) should not be confused with a Legendre transform like 
(4.54) where e and /3 are conjugated variables. According to the formulas 
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(2.38)-(2.40), the Lyapunov exponent is 2 = In 4, the escape rate is given by 
(4.52) as expected, the KS entropy is 

hKs = In 4 + F(c0 (4.59) 

and the Hausdorff  dimension is 

F(~) 
DH = 2 + - -  (4.60) 

In 2 

These relations are in agreement with the results by Billingsley ~ as shown 
in the Appendix. 

Let us apply this formalism to an example where the domain V is 
expressible with one symbol. We take V as the left-hand half of the phase 
space J~, assuming that L is even, 

{ l~x<L;0~y<l} (4.61) 

so that for X . . . .  co_1 "(Do0) 1 "--, 

1,. C O o e { - 2 , - 1 , 0 , 1  ..... L - l }  (4.62) 
I~ - (X)=  0, otherwise 

From the definition (2.43)-(4.24) of the equilibrium measure, the G(fl) 
function is summed as follows: 

G(f l )=  lira l ln Z 
n ~ c o n  

0)0091 . - , ( o n _  1 

= lira 1 T r r R " - ~  
n ~ o o  n 

Prob(ooe) l  " " �9 con- 1) exp I ~ ( 0 9  m 
m ~ 0  

(4.63) 

with 

Hence 

R o  ~ p o o e f l i ~  (o) = 1 A DBI~(O) 

r,o~ = p e t e  #1~(~) 

(4.64) 

(4.65) 

G(fl) = In •(fl) (4.66) 

where Z(fl) is the largest eigenvalue of the matrix R. For  the case L = 4, the 
matrix R is given by 
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2 

-1  

0 

1 

2 

3 
R =  

4 

5 

6 

7 

8 

9 

where 

- 2  1 

W W 

W W 

W W 

0 ! 

W W 

W W 

W W 

W W 

W W 

2 3 4 5 

W W 

W W 

W W 

W W 

S S 

S S 

S S 

S S 

6 7 8 9 

S S 

S S 

S S S S 

S S S S 

S S S S 

(4.67) 

1 1 (4.68) w = ~ exp fl and s = 

and the blanks stand for zeros. In order to determine the G(fl)  function, we 
need to solve the eigenvalue problem for R. We assume an eigenvector of 
the form 

fq)) = ( u _ l ,  v _ l ,  Uo, Vo,..., uL,  vL) r (4.69) 

with uk = vk_ 1 for Z = 0 and 

uk = ae Ck + be-~k,  k = O, 1, 2 ..... L / 2  
(4.70) 

u~ = ce "k + de -~k, k = L / 2  ..... L + 1 

with ( and t/ two complex numbers to be found. The eigenvalue X of R is 
then 

e ~ 1 
Z = ~- ( 1 + cosh ~) = ~ ( 1 + cosh t/) (4.71 ) 

The characteristic equation becomes 

~ ( L +  1 ) + t a n h  q r / ( L +  1 ) = 0  tanh t anh~  ~tanh (4.72) 

The coupled equations (4.71) and (4.72) have been solved numerically and 
the resulting G(fl)  function is plotted in Fig. 18 together with its Legendre 
transform F(a). The asymptotic behaviors of these functions as well as their 
Taylor expansion around fl = 0 and c~ = 1/2, respectively, can be determined 
as follows. 
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0.5 

0.4 

0.3 

G(13 ) 0.2 

o.1 

0 

-0,I 

-0.5 

L = I O  

. . . .  i . . . .  i . . . .  i . . . .  (a) 

-0.25 0 0.25 0.5 

L = I O  

i ~ l i l i 

(b) 
0 

F(cC).o.ol . . . . .  . . . . . .  

-0.02 ~ , I ~ I I ~ I , 
0'.5 1 

Fig. 18. (a) Generating function G(B) of the mean value, the variance, and higher moments  
of the residence time in the left-hand half ( -  1/2 ~< x < L/2) of the chain allowing exit and 
return from the domain; (b) the Legendre transform F(c~) of G(B) which gives minus the 
escape rate from the fractal repeller formed by the trajectories which spend a fraction e of 
their time in the left-hand half of the chain. 

For/3 ~ + ~ ,  the matrix elements of the left-hand side in (4.67) are so 
large that we can consider that the elements of the right-hand side of the 
chain are zero with respect to the others. In this limit, we should recover 
the eigenvalue problem solved in Section 4.4.2 with l =  L/2. According to 
(4.71), ~ must then be imaginary and small while t / is real and large 

~- iO, 4e ~ -~ e" (4.73) 

Introducing these in (4.72), we obtain 

7[ 
0 ~ (4.74) 

L + 2  
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as expected. For large L, the eigenvalue is 

1 ~ 2 

so that 

G(fl) ~-+oo fi--4 (4.76) 

Similarly, for f l - -*-0% the left-hand side gives negligible matrix 
elements in R, and we have 

G(fl) p~ ~ 4 (4.77) 

When fl ~ 0 and positive, we assume here again that ~ =i0. Then 
(4.71) and (4.72) are expanded in Taylor series and solved to obtain 

G(fl)=fl + l ( L2 q-2L + ~) fl2 + (fl(fl 3) (4.78) 

Its Legendre transform is ( ,)2 
- 3  ~ - ~  + . . -  (4.79) 

F(c0 = L 2 + 2-/] + 3/2 

We observe that F(c~) reaches its maximum and vanishes at ~ =  1/2, as 
expected, since the value a = 1/2 corresponds to the frequency of visit of the 
left-hand part of the container at the thermodynamic equilibrium. The set 
of trajectories /~(a = 1/2) thus defines the equilibrium state and its escape 
rate is of course vanishing. On the other hand, the escape rate becomes 
nonvanishing as soon as a is taken with a value different from 1/2 and the 
corresponding set of trajectories is a fractal repeller. The F(a) function 
gives the escape rate from this repeller as explained before. The maximum 
escape rate is reachedby the value of F(a) at the endpoints of its interval 
of definition 

F ( 0 ) = F ( 1 ) = - ~  ~ +(9(L -3) (4.80) 

The escape rates for this kind of nonequilibrium condition are thus 
typically of the order of ~(lr/L) 2. 
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4.7. Fractal Repeller Generated in Trajectory Reconstruct ion 

In this subsection, z = 1. We consider a further example of a fractal 
repeller generated by nonequilibrium constraints in the one-particle 
dynamics. We suppose that a measuring device observes the time evolution 
of the @stem. The measuring device has a finite resolution and resolves the 
system with a partition N of phase space Jr  cells labeled by integers 
~n ~ { 1, 2 ..... p}. The cells are here arbitrary without any reference to the 
generating partition considered in the previous examples. The trajectory 
~ ' X  from the initial condition X will produce a bi-infinite sequence 

_0" . . . .  O" 2 0 " _ 1 ' 0 " 0 0 " 1 0 " 2  " ' "  (4.81) 

which appears as the recorded data from the measuring device. Once the 
observation has been made we would like to reconstruct the trajectory of 
the system from the observed data (4.81). We expect that this recon- 
struction will be possible only if the observation was carried out with a 
high enough resolution, i.e., if the partition is sufficiently fine. Otherwise, 
some ambiguity will arise in the reconstruction and we shall obtain a set 
of trajectories from the sequence a rather than a single trajectory. 

The question is thus the following. Given the partition ~ ,  what is the 
Hausdorff dimension of the set of trajectories ~ which correspond to the 
recorded sequence cr? If the partition N is generating, we know that a 
unique trajectory corresponds to a and the Hausdorff dimension is then 
z e r o .  

According to the Shannon McMillan-Breiman theorem, we have 
that (12) 

Prob(ao~l  ... a, 1) ~ exp - th(N) (4.82) 

for almost all the trajectories in ~/. Here Prob is the equilibrium proba- 
bility measure (2.43) (4.24) and h(N) is the entropy per unit time of the 
partition N with respect to the dynamical system. We see from (4.82) that 
the escape rate from the set ~ is precisely given by the entropy per unit 
time of the partition 

7(g~) = h (~)  (4.83) 

Because the system is uniformly hyperbolic, we always have 

2(o~o) = In 4 (4.84) 

so that the KS entropy per unit time of the set ~ is 

hKs(~r ---- 2(o~o) -- ?(~-)  = In 4 -- h (~)  (4.85) 
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When the partition 3 a is generating, then h(3a)=ln  4 and h~:s(o~,)=0, 
since ~ ,  contains then a single trajectory and is thus nonchaotic. For 
the generating partition also, the escape rate reaches its maximum, 
7 ( ~ )  = In 4. 

Let us now consider the case of an arbitrary partition N. Because the 
system is uniformly hyperbolic, all the generalized dimensions are equal. 
According to Young's formula D~ = 2hKs/)[, (49) we obtain the central result 
of this subsection, 

O H ( ~ a  ) = Ol(o~,7 ) --  2 - - -  
In 2 

(4.86) 

The set o% is thus a fractal repeller. The Hausdorff dimension is depicted 
in Fig. 19 as a function of the entropy of the partition. 

For  a measuring device with a bad resolution, h(3 a) is close to zero 
and the device can resolve the dynamics only into fractal sets with a dimen- 
sion close to the phase space dimension. On the other hand, we see that the 
measuring device needs to have a data accumulation rate close to the KS 
entropy of the system, namely hKs = In 4, to be able to resolve individual 
trajectories. There is a transition at hKs where the Hausdorff dimension of 
the selected fractal set drops to zero. We can argue that this vanishing 
dimension is never reached because the partition of the measuring device 
never coincides exactly with the gjenerating partition of the dynamics. In 
this way, a fractal dimension characterizes the resolving power of the 
measuring device observing a given dynamical system. 

I)i( ~ ) 

2 

h~s = I n 4  h ( P )  

Fig. 19. Information or Hausdorff dimension of the fractal repeller formed by all the trajec- 
tories which visit the same sequence g of cells of an arbitrary partition ~ of phase space, 
versus the entropy per unit time h(~)  of this partition ~ .  The information dimension vanishes 
when the partition ~ is the generating partition, in which case h(~)  is the KS entropy 
hKs = In 4 of the multibaker mapping. 
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4.8. Nonequilibrium Conditions for the Many-Particle System 

In the present subsection, we shall consider the problem of density 
fluctuations. We place in the system N independent particles and we 
require that, at each iteration, the number of particles in the left-hand half 
of the container is equal to M, which is in general different from N/2. 

The phase space of the system is now 

~ | Jr174 -.. | (4.87) 
N copies 

of dimension 2N. The trajectories of this dynamical system are in one-to- 
one correspondence with the bi-infinite sequences composed of N-uples of 
the symbols defined in the preceding sections: 

. . . .  ~r'~ 2~ 1 - ~ 0 ~ ' ~ 1 ~ ' ~ 2 - . .  

with 

... ~o"~ ~"~ ~o 1~ ~?~ ~o~ 1~ . . .)  
= ~ o ~  ~ ~O(o ~ ~o~ ~ ~ 

~ ~ ~o ~ ~ ~o~ ... 

(4.88) 

co(~~ ~ { - 2 ,  - 1, 0, 2,..., 2L, 2L + 1} (4.89) 

The invariant equilibrium measure is here 

N 

Prob(g2o~21 ... f2,_ 1) = 1-[ P~P~[~~ (4.90) 
i ~ 1  

with (4.24), so that the KS entropy per unit time and the sum of positive 
Lyapunov exponents are both equal to 

hKs = ~ 2 i = N l n 4  (4.91) 
)~i>0 T 

We divide the chain into two halves and let • and ~ denote, respectively, 
the left- and right-hand halves: 

~ =  {-1/2 <~x <L/2;O<~y< 1} (4.92) 

~ =  {L/2<<.x<L+ 1 / 2 ; 0 ~ y <  1} (4.93) 

for L even. I,~(X) and I~(X) will denote the indicator functions of these 
domains. 
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Our nonequilibrium condition requires that, at each time t, 

N 

Mx~< ~ I~(col~ ) < M 2  with I ~ M ~ < M  2<~N (4.94) 
i = 1  

Because the particles are independent and because the domain U is 
described by an alphabet with L + 2 symbols, the number of instantaneous 
states satisfying the above condition is 

( L + 2 )  N ~ with = m !  ( N - m ) !  (4.95) 
m=Ml 

out of the total number of states, which is (2L + 4) N. The fractal repeller 
defined by such a nonequilibrium condition is described by a topological 
Markov chain with a transition matrix 

= A~ol,lo,12} . . . .  {N~Ao~c~comAo)(:l~l:l"" Ao~INI~INIA~III~I2>..~lU~ (4.96) 

Ar . . . .  (N) is the projector function which takes the value 1 on the states 
(4.95) and zero otherwise 

Z J  o9(1}co121 . . . ~)(N)  : 

where ~ is the set of 

2 I~,(gO(l))  I&(cO(2)) ' ' "  I~N(CO(N)) 
X l Y ' 2  - - �9 Y 'N e ~ 

(4.97) 

(4.98) 
m =  m l  

allowed strings of N symbols ~U or 3q/" satisfying the nonequilibrium 
condition. 

The decay rate from the nonequilibrium state is calculated from the 
eigenvalue equation 

B I ~ )  = ~clqb) (4.99) 

where I~b) is a vector with a number of components equal to (4.95). To 
gain some insight into this problem, we make the following observation. 
Because of the structure (4.97) of the projector A, the matrix B can be 
rewritten 

No( 1 )tO(2) . . .  (D(N), (Z)(I If7)(21 , . . ~ ( N )  

z~ ~ I  ~ 1  z~Ua~U (4.100) 
= Z 2 x x go(l )O3(1 , " " " ~ " r 

822 /68 /5 -6 -4  
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in terms of the four different matrices 

A ~ ,  A ~ ,  A~/~ -, A , ~ -  (4.101) 

defined by 

A ~~o~ = Izc(~o) Ao/,I#(cS) (4.102) 

The matrix A ~-~ is the matrix of the topological Markov chain for the 
nonequilibrium problem of Section 4.4.2 with a reflecting boundary at the 
left and an absorbing boundary at the middle of the chain (with l = L/2). 
The matrix A ~ ' ~  describes the symmetric condition with respect to the 
middle of the chain. However, the matrices A f ' ~  and A ~ only contain 
a few nonvanishing elements near the middle of the chain. 

The calculation of the escape rate appears as a formidable problem. 
We provide here a lower and an upper bound on it based on the following 
result of the Perron-Frobenius  theorem, which says that the eigenvalue of 
a positive matrix like B is given by (44) 

(~o< 1) ...~o(N)IB[~ ~ 
~c = Max Min (~o(i) (4.103) 

I~> <o)(~) . . . .  (u)l --. ~(U)l (b > 

An upper bound on ~ is given by the eigenvalue of the equilibrium state 
obtained by releasing all the nonequilibrium constraints, i.e., 4 u. A lower 
bound is obtained taking for ]~b) the special vector 

105) = I ~ o ~ )  . . .  I~o ~ )  l q < ~ )  . . .  t~*-) 
m N - - m  

(4.104) 

where [~0 *~) and 1~0 '~-) are the eigenvectors of A r  and A ~ corre- 
sponding to the largest eigenvalue calculated in Section 4.4.2 to be 

7~ 
X = 2 + 2 cos - -  (4.105) 

L + 2  

In the sum (4.100), we drop the terms for which ~ - # ~  to keep only the 
term with {~}  = { ~ , ) =  ~ . - - ~ V  .. .  ~ in order to derive a minimum. 
The eigenvalue is thus bracketed in the interval 

Z N ~ 1(. ~ 4 N (4.106) 

so that the escape rate is contained between the values 

r 1 + cos[n / (L + 2)] - ~ N ~  (4.107) 
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In the Appendix, a similar many-body problem is solved for the simple 
baker transformation. The conclusion is that fractal repellers also appear in 
the many-particle dynamics under nonequilibrium conditions. 

4.9. The IViultibaker Chain and Relaxation T o w a r d  Equil ibrium 

Due to the dynamical instability coming from the sensitivity to initial 
conditions, each trajectory of the multibaker chain is of saddle type with a 
positive Lyapunov exponent. In the preceding sections, we observed that 
nonequilibrium constraints in typical time-dependent experiments induce a 
selection of trajectories. The set of selected trajectories is in general non- 
empty and forms a fractal object in phase space because of the combination 
of hyperbolicity together with trapping, in particular, by periodic orbits. 
This fractal object defines what we called here a nonequilibrium state, 
which is characterized by a positive escape rate and, in general, a fractional 
Hausdorff dimension. The escape rate gives the rate of decay of the non- 
equilibrium state. 

Since each trajectory is of saddle type, we remark that any non- 
equilibrium constraint inducing selection of a subset in phase space would 
give a dynamically unstable state. On the other hand, the equilibrium state 
composed of all trajectories in phase space weighted with the Liouville 
measure is stable since it fills the whole phase so that trajectories cannot 
escape somewhere else. By this property, the equilibrium state is unique 
and stable with respect to any other nonequilibrium state. This observation 
validates the second law of thermodynamics for the multibaker chain. We 
thus reach the following statement: 

The dynamical system evolves spontaneously from each nonequilibrium 
fractal toward the stable equilibrium state. 

This statement is weaker than the second law of thermodynamics 
because we do not mention here a monotonic increasing of the thermo- 
dynamic entropy in the system. The question have been debated recently 
by several authors (63 65) and shown to require the introduction of exactness 
in the sense of Mackey (63) or dynamically intrinsic coarse graining with the 
special partitions introduced by Nicolis and Nicolis. (65) In the present 
paper, we are not concerned with this question, but focus on direct relation- 
ships between the dynamical instability and the transport properties. We use 
the concept of KS entropy per unit time, which characterizes dynamical 
randomness in a way compatible with Hamiltonian or conservative 
dynamics. In open situations where nonequilibrium fractals are defined, the 
KS entropy and the Lyapunov exponent are related to the escape rate, 
which in turn is given by the transport properties. We are thus able to 
prove here the formula (4.36) for the nonequilibrium fractal ~ obtained 
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with two absorbing boundaries separated by a distance l (see Fig. 20). The 
transport coefficient emerges as a property of the large system arising from 
the limiting behavior of the escape rates on larger and larger domains. The 
formula (4.36) expresses explicitly this fact. 

In the next section, we shall see that a fractal repeller naturally exists 
in large but open classical systems. 

5. FRACTAL REPELLER IN THE OPEN A N D  FINITE 
MULT IBAKER CHAIN 

5.1. Def in i t ion of  the System 

Systems which are studied in the laboratory are formed by a finite 
piece of material which is in contact through walls and probes to the 
laboratory and the observing devices. Let us idealize this situation by 
considering a finite chain of baker transformations from which the particle 
can enter or exit in free motion. The system in thus open and is the 
analogue for our simple model to the finite slab make up of a Lorentz 
lattice of hard-disk scatterers which was considered elsewhereJ 9) 

As in Section 3, the mapping is composed of two submappings, ~1 
followed by ~b 2. The phase space is here again the strip of height 1 extend- 
ing from - ~ to + ~ along the x axis. During the first map, a baker trans- 
formation with vertical stretching, horizontal cutting, and right-handed 
gluing acts on each of the L +  1 squares (3.1) with k = 0 ,  1, 2,..., L. On the 
remaining squares with k = - 1, - 2, - 3 .... and k = L + 1, L + 2 ..... the first 
mapping 451 permutes the left-hand half with the right-hand, inducing a 
translational motion which is area-preserving but not hyperbolic. The first 
mapping can thus be written as follows: 

( l / s )  2 [ ~ . ( F  l ) - h K s ( F l ) ]  

D = 1/4 . . . . . . . . . . . . . . . . . . . .  

f 
0 n I I I n I n I t [ J I 

0 10 20 30 40 50 60 

Fig. 20. Diagram showing how the diffusion constant is reached from the difference between 
the Lyapunov exponent and the KS entropy of the fractal repeller ~ generated by two 
absorbing boundaries separated by a distance 1. 
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(x + �89 y) 

J 
(x -- 1, y) 

cb,(x, y) = ~ ( x / 2  + k/2 - �88 2y) 

/ 

~ (x/2 + k/2 + �88 2y - 1 

k _ 1  ~<~x<k, 0 ~ y < l  

k =  -1 ,  - 2 ,  - 3 , . . . ; L +  1, L + 2  .... 

k < ~ x < k + � 8 9  0 ~ < y < l  

k =  -1 ,  - 2 ,  -3,... L +  1, L+2,. . .  
1 k - � 8 9 1 8 9  O~<y<7 

k=O, 1,2 ..... L 

k - � 8 9  1, �89 

k=O, 1,2 ..... L 

(5.1) 

During the second mapping ~2, a baker transformation acts on the L 
squares (3.3) with k = 0 ,  1, 2,..., L - 1 .  On the remaining part of the phase 
space, the second mapping q~2 permutes neighboring half squares two by 
two so that we can write 

(x + 1, y) 

~2(x, y) = l ](x �89 Y) 

l (x/2 + k/2, 2y) 

(x/2 + k/2 + �89 2y - 1) 

k < ~ x < k + � 8 9  0 ~ < y < l  

k =  -1 ,  - 2 ,  - 3 , . . . ; L , L + I , L + 2 , . . .  
k + l < , x < k + l ,  0 ~ < y < l  

k =  -1 ,  - 2 ,  - 3 , . . . ; L , L  + I , L  + 2 .... 

k < < , x < k + l ,  0~<y<�89 

k = 0 ,  1, 2,..., L -  1 

k < ~ x < k + l ,  �89  

k = 0, 1, 2 ..... L - 1 (5.2) 

The finite multibaker transformation is 
tion of the preceding mappings, �9 = q5 2 o ~1 

�9 (x, y) = 

( x +  1, y) 

( x -  1, y) 

(x/2- 3, 2y) 
(x/2 + L/2 + 3, 2y - 1 ) 
(x/4 + 3k/4 - ~, 4y) 

(x/4 + 3k/4 - ~, 4y - 1 ) 

(x/4 + 3k/4 + ~, 4y - 2) 

(x/4 + 3k/4+ ~, 4y - 3) 

then defined by the composi- 

k - � 8 9  0 ~ < y < l  

k . . . .  , - 3 ,  - 2 ,  - 1 ;  L +  1, L+2, . . .  

k ~ x < k + � 8 9  0 ~ < y < l  

k . . . .  , - 3 ,  - 2 ,  - 1 ; L +  1, L + 2  .... 

-�89 +�89 O~<y<�89 
L - � 8 9  1 ~ < y < l  
k 1 ~<y<l  ~<~x<k+�89 0 

(5.3) 
k = 1 , 2 , 3  ..... L 

1 1 k - � 8 9 1 8 9  ~<~y<~ 
k = 1 , 2 , 3  ..... L 

k-�89189 �89 
k=O,  1,2 ..... L - 1  
k - 1  3~<y<l  ~<~x<k+�89 a 
k = 0 ,  1, 2,..., L -  1 
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We can verify that the image of the domain covers the whole phase space 
as required (see Fig. 21). 

The mapping q~ is area-preserving because its Jacobian determinant 
equals one everywhere. 

Trapped trajectories forming an invariant set of trajectories remaining 
foreover at finite distance exist only in the domain 

~//'= { 0 ~ x <  L, 0~<y<  1} (5.4) 

because the other part  of phase space escapes to infinity under q5 or q~-1 
(see Fig. 21 ). As will appear  later, the invariant set is a fractal contained in 
the domain U.  Most trajectories escape from ~ except the fractal set, 
which is of zero Lebesgue measure. In the domain ~ ,  the dynamics is 
uniformly hyperbolic with stable manifolds of trapped trajectories com- 
posed of straight segments which are parallel to the x axis, while the 
unstable manifolds are parallel to the y axis. The stretching factor in the 
domain ~ is 4 as for the infinite multibaker transformation. 

As before, the inverse mapping ~ - ' =  ~ - 1 o  ~ 2  ~ acts on the x coor- 
dinate of the current point X =  (x, y) like the one-dimensional mapping 

~4x-3k-�89 k<~x<k+�89 k = 0 , 1 , 2  ..... L - 1  

4 x -  3k - } 

x + l  

~(x)  = x-1 

2 x + ~  - l ~ x < - ~  

2x-L-~ L+�89 

k+�89 k = 0 ,  1, 2,..., L -  1 

k<~x<k+�89 
k . . . .  , - 4 ,  - 3 ,  - 2 ; L ,  L +  1, L + 2  .... 

k+�89 
k . . . .  , - 3 ,  - 2 ,  - 1 ; L +  1, L + 2  .... 

1 

- ~ - 3 - 2 - 1 0 1 2 3 4 5 6 7 8 x  

(5.5) 

XXXX   I I I I XXXX 
W N N NII I:'IIItlt,I 8 B @ E § 

 I(XXXX IoI I XXXX  
N N H 8 N B 

~u = -8 -7 -6 -5 -/* -3 -2 -1 0 1 2 3 ~ 5 6 7 8 9 10 11 12 13 1~ 15 

Fig. 21. Multibaker mapping (b in its open version along the infinite phase space. Baker 
transformations (.b) act on a portion of length l of phase space while translations act at 
left- and right-hand sides to model a flow of ingoing and outgoing particles to and from the 
scatterer. ~ is the composition of ~b I followed by ~2- 



which is shown in Fig. 22 for L = 4. We observe that fixed points for ~b n 
(n = 1, 2, 3,...) can only exist in the interval 0 ~< x < L. Accordingly, a parti- 
tion of phase space into half-square cells is defined with the correspondence 
(4.5) for k = 0, l, 2 ..... L - 1  and, furthermore, with the two semi-infinite 
strips 

- , - ,  { (x ,  y):  x < 0 ,  0 ~ < y <  1} 

+ , - ,  {(x ,y) :L<~x,  0~<y< 1} 
(5.6) 

(5.7) 

To each trajectory from the initial condition X =  (x, y) there corresponds 
a bi-infinite sequence of one of the following types: 

Type I 

Type II 

Type III 

Type IV 

~ 1 ~ 2  "''~n~ ~ ~ r  n ) l  

~ 1 ~ 2 ~ 3  ' - -  

" ' ' ~ _ 3 ~ _ 2 ~  1 ~  m 

�9 ' ' ~ 3  ~ 2 ~ 1 ~ 0 ~ 1 ~ 2 ~ 3  " ' '  

with 

Fig. 22. 

cone {0, 1, 2, 3 ..... 2 L - 2 ,  2 L -  1 } and { ,~e  { + , - }  (5.8) 

The alphabet of this symbolic dynamics here contains 2L symbols. The 

/ i 
' / 1  L 
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One-dimensional mapping ~b(x) ruling the motion of the x coordinate of a point 
under the inverse open multibaker mapping q~-i of Fig. 21. 
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symbols co n follow with constraints according to the topological transition 
matrix 

1 c~=0; /3=0, 1 

A ~ =  ~ = 2 k - 1 , 2 k ;  /3= 2 k -  2, 2 k -  l, 2k, 2k+l  ( k = 1 , 2 , 3  ..... L - l )  

~ = 2 L -  1; / 3 = 2 L - 2 , 2 L - 1  
0 otherwise (5.9) 

This 2L x 2L transition matrix has the same form as the matrix (4.30) of 
the finite chain with two absorbing boundaries. 

Trajectories of type I spend only a finite number of iterations in the 
domain ~ .  On the other hand, trajectories of type IV are trapped forever 
in the domain ~ :  they form the invariant set we shall call the fractal 
repeller, which is of vanishing Lebesgue measure because most trajectories 
are of type I. Trajectories of types II and III form the stable and unstable 
manifolds of the repeller, respectively. To each trajectory of type IV there 
correspond an infinite number of points, which we distinguish by a dot. 
The mapping 45 induces a shift operation to the left on the bi-infinite 
sequences. The trajectories of the repeller are in one-to-one correspondence 
with the bi-infinite sequences of type IV, so that the partition (4.5) is 
generating for the repeller. 

Proof. (a) Assuming that the trajectories stay forever in ~ and 
because the cells of the partition are nonintersecting and cover this domain, 
a single symbolic sequence is given to each bi-infinite trapped trajectory by 
following its time evolution under 45'(t e Z) from its initial condition. Once 
the trajectory exits V,  it necessarily escapes to infinity under 45 or 45 1 
so that such a trajectory is not bi-infinitely trapped, as assumed. (b) See 
Section 3.4. 

The time-reversal transformation T for the mapping 45 is shown in 
Fig. 23. T is given by an inversion along the diagonal of each square S] k) 
(k=0 ,  1, 2,..., L). On the other squares S~ k), T is given by an inversion 
along the diagonal followed by a baker transformation with a vertical 
stretching in the negative y direction. We have 

f ( y+k - �89  x - k + � 8 9  

(y/2 + k, 2x - 2k + 1 ) 
T(x, y) = / ( y / 2  + k - �89 2x - 2k) 

k-�89189 0 ~ < y < l  

k = 0 ,  1,2 ..... L 

k-�89 0 ~ < y < l  
k<~x<k+�89 0 ~ < y < l  
k=. . . ,  - 2 ,  - 1 ; L +  1, L + 2  .... 

(5.1o) 
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-3 -2 -1 0 1 x -3 -2 -1 0 1 x 

1 T ? ? /" ? /* P 

i, i 
r IT IT -EIyl /]-i]i  

-g , /  <" , /  e" . /  

Fig. 23. Geometrical proof of the time-reversal symmetry of the open multibaker map at one 
end of the chain. The diagonals with circles are the axes of inversion of the corresponding 
squares under T. Diagonals with bars mean that T performs an inversion around this axis 
followed by a baker transformation with a stretching in the direction of the negative y axis. 

T is defined on every point of J/r T is an involution ( T  2 = 1 ). We note that 
time-reversal inside the chain fixes the form of the transformation T outside 
the chain. 

5.2. Scattering Resonances 

The treatment of the chain in the present scattering configuration is 
in all points identical to the treatment of Section 4.4.1 for the absorbing- 
absorbing boundary conditions. Accordingly, the decay rates are given by 
(4.18), but here with m >~ 1, since m =0  is not compatible with the absorb- 
ing boundaries, as remarked in Section4.2.1. The decay modes are 
obtained by solving the eigenvalue problem (2.19)-(2.20). Let 

I (p)=(Uo,  Vo, U~,Vl,...,u~ 1,v~ 1) ~ 

(01 = (~o, Vo, ul ,  vl,-.., 17L_ 1, f L - ~ )  

(5.11) 

(5.12) 

be the eigenvector and the adjoint eigenvector associated with the eigen- 
value Xm = 2 + 2 cos[mrc/(L + 1)] of A. We find the elements 

Uk=Vk i=c{sin(kO)+sin[(k + l)O]} 

fik = Vk= 5sin[(k+ 1)0] 

(5.13) 

(5.14) 

with k=0,1 ,2 , . . . ,L  and the angle O=(m~)/(L+l) ( l ~ m 4 L ) .  Some 
eigenvectors ](p) are drawn in Fig. 24. 
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Y1 = 0.00024 

T2 = 0.00097 

T3 = 0.00218 

L 

Eigenveetors 

0 L 

100 

Invariant probability 

x x 

Fig. 24. Decay modes of the fractal repeller of the open and finite multibaker mapping of 
Fig. 21. The modes correspond to the complex scattering resonances of the family fl = 1 and 
m/> 1 (L = 100), together with the escape rates (z = 1). The left-hand column shows the eigen- 
vectors Iq~). The adjoint eigenvectors (~bl of A have the same shape as lop) on the scale of 
the figure. The right-hand column depicts the invariant probability {n,} associated with the 
mode m = 1 of the fractal. 

5.3. Invariant Probability Measure and Its Characteristic 
Quantities 

Associated with the slowest decay rate is an invariant probability 
measure on the fractal repeller. By the Perron-Frobenius theorem, all the 
elements of the eigenvector (5.13) corresponding to )~1 and of its adjoint 
(5.14) are positive since all the elements of A are positive or zero. 

We can then construct a probabilistic Markov chain isomorph to the 
dynamics on the fractal repeller according to (2.31)-(2.33). The stationary 
probability is depicted in Fig. 24. 

The characteristic quantities of chaos on the fractal repeller are given 
by (4.32)-(4.35) of Section4.4.1, but with L replacing I. In particular, 
Fig. 25 shows how the exactly calculated escape rate behaves with the 
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L 

Fig. 25. Escape rate ? from the fractal repeller ~L versus the length L of the scatterer. The 
ordinate at the origin of the asymptote is related to the diffusion coefficient. 

10 ~ 
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length L of the scatterer and we observe the approach to the diffusive 
behavior (4.33). The repeller is here also a simple fractal, with a trivial 
multifractal spectrum. For a large system, the fractal dimension tends to 
the value two, so that the fractal repeller fills the whole phase space in this 
limit. 

5.4. Large -Sys tem Limit 

The problem described here is an effusion out of the multibaker chain 
into free motion. At both ends of the chain, particles are leaking out with 
the escape rate (4.33). When the system is large ( L ~  ~) ,  the decay rates 
for /3 = 1 are given by (4.20) with the diffusion coefficient ~ = 1/4z (here 
a = 1) that was calculated in Section 3. As in Section 4.4.1, we observe that 
these decay rates, which are exactly derived from the Liouville dynamics of 
the system, approach the decay rates calculated from the diffusion equation 
(3.25) solved with absorbing boundaries at x = 0  and x = L .  The solution 
of this problem is given by (4.22) but with the sum starting at m-- 1. As 
previously, the phenomenological rates are approached by the exact decay 
rates when L ~  oo. Furthermore and in analogy with Section4.2, we 
observe that the eigenvectors of the Liouville dynamics, namely (5.13), 
show the same shape as the corresponding eigenmodes of the 
phenomenological equation (see Fig. 24). 

We conclude that decay and relaxation can be understood directly at 
the level of the Liouville dynamics without any recourse to stochastic 
assumption as done in standard kinetic theories. Although this result was 
obtained here in the case of a simple model, we believe that it can be 
generalized to more realistic systems like the Lorentz gas we described in 
ref. 9. The results of the present theory can be applied to other systems 
provided that their periodic orbits are all unstable of saddle type or that 
the stable periodic orbits can be shown to play a negligible role. In systems 
where forces may be attractive, stable periodic orbits may appear in 
physical processes involving the formation of molecular clusters which 
would remain thereafter undisturbed. At high temperature, the formation 
of bound particles is negligible, so that most periodic orbits would be of 
saddle type in such systems and the preceding results would apply to this 
dominant part of phase space which shows chaotic behaviors. In condensed 
phases like liquids or solids, we believe that similar considerations hold 
because of the numerical evidence reported in the introduction that the 
space-time entropy of these systems is positive. Since the KS entropy is a 
lower bound on the topological entropy per unit time, we may thus expect 
that the number of periodic orbits increases exponentially in such systems, 
a situation which is possible only for unstable periodic orbits. The generality 
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of the chaotic behaviors in nonlinear systems which was observed during 
the last decade leads us to expect that most periodic orbits are unstable in 
typical systems at room temperature which present irreversible processes 
and where the present theory is thus of application. We conjecture that, 
for a general nonequilibrium problem, the eigenvalues of the pheno- 
menological equation will be given by the classical complex scattering 
resonances of the exact Liouville dynamics. These resonances naturally 
appear in the classical context in analogy with the equivalent concept in 
quantum scattering theory. In the limit of a large system, they approach 
the eigenvalues of the phenomenological equations, which are usually 
easier to derive than it is to solve the Liouville dynamics. Our purpose here 
was to show that there are no difficulties in principle to deriving transport 
properties in a straightforward way from the Liouville dynamics thanks to 
the scattering resonances. The concept of decay rate is thus defined at the 
level of the microscopic dynamics from the existence of trajectories of 
saddle type as they naturally arise in chaotic behaviors, in full agreement 
with the microscopic reversibility, which requires only that stretching along 
the unstable directions equals contraction along the stable directions. In 
this way, a bridge can be established between the microscopic reversible 
and the macroscopic irreversible dynamics. 

Since the phenomenological equation is valid only in the limit of a 
large system and concerns only the slowest decay modes of the hydro- 
dynamic dynamics, we may expect that growing discrepancies will appear 
between the exact resonances and the phenomenological ones related to 
the fast decay modes. Such a discrepancy already appears for large 
m's between the family fl = 1 of exact resonances and the corresponding 
phenomenological ones. Furthermore, the exact Liouville dynamics presents 
new families of resonances which could not have been expected from the 
phenomenological equation, namely the scattering resonances (4.18) 

'Ym,3 for fl~>2 (5.15) 

These decay rates are very large and concern the dynamics on times of the 
order of the inverse of the Lyapunov exponent directly related to the 
microscopic deterministic dynamics, which is ignored in the kinetic 
theories. The first of these fast decay rates appears at 

l ln 8 1 (~,]2 
]71,2  ~ 27 - -  1 +cos[rc/(L+ 1)] ~ - l n 4 + ~ z  \ L /  -1- (9(L -3) (5.16) 

This rate is of the same order as decay rates in the slowest family, 7m. 1, 
when 

m~0.53L (5.17) 
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which fixes a limit to the phenomenological equation. In (4.22), the use of 
the decay modes with m larger than (5.17) is therefore not justified. This 
limit corresponds to a time scale of the order of the inverse of the 
Lyapunov exponent 

1 "C 
t ~ - =  (5.18) 

2 In 4 

On time scales shorter than the Lyapunov time, the dynamics follows 
the deterministic evolution. On longer time scales, the dynamics shows 
sensitivity to initial conditions and randomization at the basis of the 
macroscopic diffusion. Contrary to the standard kinetic theories, the origin 
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Fig. 26. (a) Comparison of the cumulative distribution functions N(z) for the exact scatter- 
ing resonances of the Liouville dynamics (1) and for the eigenvalues of the phenomenological 
diffusion equation (2) for a chain of length L =  100. We introduced z = e x p ( - ? )  ( z= l ) .  
The bumps appearing near z = 0 on the distribution (1) of the exact resonances are due to the 
families /~=2, 3,... of scattering resonances; (b) enlargement of the distribution near the 
slowest resonances showing the slight discrepancy between the exact and the phenomenol- 
ogical dynamics in the hydrodynamic regime. 
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of randomization is now understood in terms of dynamical chaos and 
characterized quantitatively with the KS entropy per unit time and volume. 
The present theory reproduces the irreversible behaviors in the domain 
where it is expected and, furthermore, the theory is able to provide the 
limit of validity to the standard kinetic theories. 

Figure 26 shows the cumulative distribution function for the decay 
rates of the Liouville dynamics compared with the eigenvalues of the 
diffusion equation. Defining z = y-1 ,  we introduced 

L 

N(z)- Z ~ O(Z--Zm.~) (5.19) 
m - - 1  f l = l  

where O is the Heaviside step function and 

1( 
Zm, fl='- ~ 2 + 2 C O S L +  1 , m = l ,  2,...,L; f l = 1 , 2  .... (5.20) 

and 

(ph) __ e x  p _ ( m T c ' ~  2 

Z m  - -  \2LJ ' 
m = 1, 2 .... (5.21) 

The figures compare the cumulative distribution functions of the exact and 
approximate equations for a finite multibaker mapping with L = 100 cells. 
The phenomenological equation fairly reproduces the spectrum of the 
Liouville equation for the slow part of the dynamics given by the long- 
wavelength eigenmodes with z ~ 1. However, significant differences appear 
in the fast dynamics, which shows the limited validity of kinetic theories 
compared with a chaotic theory. 

5.5. Di f fusion and Chaotic Scatter ing 

A deep relationship exists between large-scale diffusion and chaotic 
scattering which has been the object of recent studies. (8'37'38) Classical 
scattering has been described by an S-function which relates the ingoing 
trajectories to the outgoing ones in analogy with the quantum S-matrix. 
Work has shown that the outgoing trajectory may be an intricate function 
which is singular for the ingoing trajectories asymptotic to the fractal 
repeller. As a corollary, the time spent in the scatterer is also a singular 
function of the impact parameter. The open multibaker mapping also 
presents this phenomenon, as shown in Figs. 27 and 28, where we depict 
the exit time versus initial conditions along a vertical line at the end, x = 0, 
and in the middle, x = 5, of a chain of length L = 10. The fractal set of 
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Fig. 27. Exi t  t ime funct ion from the mu l t i bake r  scat terer  for ini t ia l  condi t ions  at  x = 0 a long  

the y axis for a cha in  of length L = 10. The exit  t ime is the n u m b e r  of i t e ra t ions  to reach ei ther  

x < - 1 / 2  or L+l/2<~x. The funct ion appears  to be s ingular  on the fractal set of the 

in tersect ions  of x = 0 wi th  the s table  mani fo lds  of the fractal repeller. 

singularities of these functions has a fractal dimension given by half'the 
fractal dimension of the repeller. In the large-system limit, 

- 2 - 4 1 n 4 \ L J  +(~(L (5.22) 

[cf. (4.35)]. We observe that the singularities fill the whole set of incoming 
trajectories for a large system. 

In scattering processes, the fractal repeller is formed by trajectories 
which are trapped in the scatterer. A nonequilibrium constraint is not 
required to select the fractal repeller, which is intrinsic to the scattering 
process. In this context, we recently showed for the Lorentz gas that the 
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Fig. 28. Same as Fig. 27, but  a t  the midd le  x = 5 of the chain  of length L = 10. The funct ion 

is symmet r ica l  for an invers ion  wi th  respect  to y = 0.5 up  to numer ica l  errors.  
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diffusion coefficient appears in the quantities characterizing the chaotic 
scattering. (9) For  the open multibaker chain, the formula (4.36) relating 
chaotic scattering to diffusion is also of application and is derived in the 
same way as in Section 4.4.1 for the fractal repeller ~L in the system of 
length L. In the limit L--* o0, the KS entropy equals the Lyapunov expo- 
nent and we recover the Pesin formula. (15) This result seems to have a large 
application range. It concerns not only systems with a two-dimensional 
Poincar6 section such as the multibaker chain or the 2D Lorentz gas, but 
also many-body systems such as hard-sphere gases and their transport 
properties, as discussed in the conclusions. 

6. C O N C E N T R A T I O N  GRADIENT  IN THE OPEN A N D  
FINITE MULT IBAKER CHAIN 

6.1. Fick's Law 

We consider that a concentration gradient is applied to the open 
multibaker chain defined in Section 5. A continuous flow of particles is 
scattered by the multibaker chain. The concentration of particles arriving 
from the left is p and the concentration of particles arriving from the right 
is p +, which is in general different from p .  The chain is thus permanently 
occupied with a distribution of particles that we want to determine. The 
dynamics occurs on the set of trajectories which are not trapped by the 
scatterer. This set is complementary to the set composed of the fractal 
repeller and its invariant manifolds. The invariant probability measure is 
defined by requiring that at each time step, the incoming cells of the parti- 
tion co = - 1  at the left side and co--2L at the right side are uniformly 
covered according to Poisson distributions. The number of particles in the 
cell o) = - 1  (resp. o~ = 2L) of area 1/2 is a random variable N_ (resp. N+ ) 
such that 

~ 

Prob{N+ = n } - n !  - \ 2 J (6.1) 

The distributions (6.1) also hold for each ingoing cells arriving from minus 
and plus infinity, respectively. The stochastic process sodefined is called a 
Poisson suspension over the dynamical system. (42) The scatterer acts on the 
incoming distributions by stretching and cutting according to its own 
dynamics so that the outgoing cells are covered with a pattern formed by 
vertical strips with a density p + and p_  whether the strip is issued from 
plus or minus infinity. Because of the fractal repeller, finer and finer strips 
accumulate along the unstable manifolds of the fractal repeller. The strips 
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are composed  of trajectories of type I in the no ta t ion  of (5.7)-(5.8), so that  
there is a countable  set of strips which are labeled by the strings 

with 

colco2 "" "co,+1 (6.2) 

~ , ~  { - 1 ,  2L} (6.3) 

OOm e {0, 1, 2,..., 2 L - -  1 }, (m = 2,..., n) 

a~,+l ~ {- -2 ,  2 L +  1} 

co l is necessarily the symbol  of one of the two ingoing cells, either - 1 or 
2L, while a~ n+ 1 is the symbol  of  one of the two outgoing cells, either - 2  
or 2L + 1. In this section, we included four extra  cells of the part i t ion of 
Section 5 in the a lphabet  (see Figs. 21 and 29). 

The  distr ibutions (6.1) induce in the system a nonequi l ibr ium ensemble 
defined with a measure  which is absolutely cont inuous with respect to the 
Lebesgue measure.  The  phase space is divided into a countable  set of 
rectangles where the density is either p+  or p . If  we average the 
nonequi l ibr ium measure  in each cell of  the generat ing parti t ion,  we find 
densities {p~} having values between p+ and p that  we want  to calculate. 
According to the geomet ry  of the system shown in Figs. 21 and 29, these 
densities are given as solutions of  the equat ion  

2 L +  1 

p~R~=p~ (6.4) 
~ =  2 

~=-I path exit t ime 

-i o 
I I 

to = . . . .  3 -2  -1 0 

(a) 

I x 
I I= 

2 ,-- 

y=O 
X = -1/2 x=0 

(b) 

(-1,011,-2) 3 

3 
(-1,0,-2) 2 

(-1,-2) 1 

Fig. 29. (a) Open multibaker mapping �9 acting on ingoing particles at the left-hand end of 
the chain; (b) partition of the ingoing cell co = -1 by the stable manifolds of the fractal 
repeller with the strings co 1 -.-o~, +1 labeling the horizontal strips of the partition together with 
the corresponding exit times. 

822/'68/5-6-5 
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where R is the matrix 

R =  

1/2 c ~ = - 1 , 0 ;  / ~ = - 2  

= 2 L - 1 , 2 L ;  f l = 2 L + l  

1/4 ~ = - 1 , 0 ;  /3=0,1 

= 2k - 1, 2k; /~ = 2k - 2, 2k - 1, 2k, 2k + 1 

( k = l  ..... L - l )  

= 2 L - 1 , 2 L ;  f l = 2 L - 2 , 2 L - 1  
0 otherwise 

For L = 4, R has the form 

- 2  

- 1  

0 

1 
2 

3 

4 

5 

6 

7 

8 

9 

- 2  - 1  0 1 2 3 4 5 6 7 8 9 

/2 1/4 1/4 

1/2 1/4 1/4 

1/4 1/4 

1/4 1/4 

R =  

1/4 1/4 

1/4 1/4 

1/4 1/4 

1/4 1/4 

1/4 1/4 

1/4 1/4 

1/4 1/4 

1/4 1/4 

1/4 1/4 

1/4 1/4 

1/4 1/4 1/: 

1/4 1/4 1/2 

The solution of (6.4) is 

(6.5) 

(6.6) 

P + - P  ( k + l ) + p  (6.7) 
P2k = P2k + 1 L + 1 

lp+-p_ 
. . . .  p 2 = p  + 2 L + I  

lp+-p_ 
P Z L +  1 . . . .  (6.8) P+ 2 L + I  

When p+ = p  =p ,  the whole system is covered by the equilibrium 
uniform distribution as expected. In the case p + ~> p_ drawn in Fig. 30, we 
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Fig. 30. 
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Fickian density profile {p~} across the chain under a nonequilibrium concentration 
gradient p+ >p . 

observe that the solution has the usual linear dependence with the gradient 
of concentration. Accordingly, Fick's law is satisfied for the multibaker 
chain. We note that the outgoing densities at the left and right sides are 
nearly equal to the corresponding incoming densities p + and p_ but they 
are moderated by a small quantity of order 1/(L + 1). 

An important remark is the following. Fick's law is established in the 
system when the distributions in the ingoing cells co = - 1  and co = 2L are 
uniform. It is always possible to choose adequately the distributions so that 
the concentration gradient does not obey Fick's law. However, these non- 
Fickian densities are exceptional for the following reason. These special 
distributions must be determined according to the precise forms and 
locations of the stable manifolds of the fractal repeller. Indeed, the stable 
manifolds divide the ingoing cells co = - 1  and co = 2L into horizontal strips 
(Fig. 29). The densities in each of the horizontal strips should be suitably 
chosen in order to produce an exceptional density profile. However, for 
that purpose, we need to know the stable manifolds and to send the 
incoming particles with complete control for the impact parameter to fall 
in the right horizontal strip. Because external systems have their own 
dynamics which does not carry out in general such processes, it is the Fick 
law that is observed in the real world. 

In previous sections, the KS entropy per unit time was defined for an 
invariant measure over a set of bounded trajectories. Since the stochastic 
processes considered in previous sections are isomorph to discrete Markov 
chains, their KS entropy was finite and positive. However, for scattering 
processes with a continuous flow of particles, such as the Poisson suspen- 
sion defined by (6.1), the KS entropy per unit time is no longer finite and 
must be generalized into an e-entropy per unit time to characterize dyna- 
mical randomness. (5s'56) At equilibrium and in the limit of a long chain, the 
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e-entropy per unit time can be shown to increase linearly with the length 
of the chain so that we recover the space-time entropy (3.26). These results 
are reported elsewhere. ~66) 

7. C O N C L U S I O N S  

In the present paper, several new and different concepts have been 
introduced to study nonequilibrium problems. We illustrated these concepts 
with a simple dynamical model, the multibaker chain, which is exactly 
solvable. The multibaker chain is of large spatial extension and presents 
dynamical chaos in relation to transport in the form of diffusion, so that 
it mimics the dynamics of systems which are studied in nonequilibrium 
statistical mechanics. It allows us to bridge the gap between microscopic 
and macroscopic dynamics. The multibaker chain can be put in a closed, 
finite or infinite container or be adapted for a gedanken scattering experi- 
ment. We showed that the time evolution of the closed multibaker chain is 
described by a unitary operator which has a continuous spectrum charac- 
terized by the complex resonances, all of which can be calculated exactly. 
The slowest of the complex resonances reproduce nicely the eigenvalues of 
the diffusion equation solved for the corresponding boundary conditions. 
There is thus a quasi spectral isomorphism between the dynamics of the 
exact Liouville equation and that of the phenomenological irreversible 
equation of diffusion. This result is one of the strongest possible justifica- 
tions for the use of the irreversible equations. 

Nonequilibrium states can then be constructed by different kinds of 
nonequilibrium conditions defined by absorbing boundaries or fixed 
frequencies of residence in certain regions of phase space. The sets of 
trajectories which satisfy these nonequilibrium conditions are highly 
unstable and of zero Lebesgue measure. Nevertheless, these nonequilibrium 
sets are not empty, but are Cantor sets forming a fractal repeller. The rate 
of escape, which is the slov~est resonance for the dynamics on the fractal 
repeller, gives the lifetime of the nonequilibrium state. When the non- 
equilibrium conditions are of hydrodynamic nature, the escape rates are 
small and appear to be identical to the decay rate given by the diffusion 
equation. 

We analyzed several nonequilibrium conditions to show the variety of 
fractal repellers that can be obtained for one-particle or many-particle 
systems. A fractal repeller is thus associated with each nonequilibrium 
state. When the nonequilibrium constraint is relaxed, we obtain the equi- 
librium state and the fractal repeller occupies the whole phase space. In 
chaotic dynamical systems where all the trajectories are of saddle type with 
positive Lyapunov exponents, each nonequilibrium state is thus unstable 
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with respect to the equilibrium state as required by the second law of ther- 
modynamics. This result, which seems general, is expressed by a formula 
which gives the diffusion coefficient in terms of the difference between the 
Lyapunov exponent and the KS entropy of the nonequilibrium fractal 
repeller (4.36). (9) The magnitude of the Lyapunov exponent and the KS 
entropy are in general different from the magnitude of the diffusion escape 
rate since they are quantities playing a role at different levels of the 
dynamics. The Lyapunov exponents and the KS entropy concern the short- 
time dynamics, while the diffusion escape rate concerns the long-time 
dynamics of large spatial extension. In nonequilibrium conditions, both 
dynamics are related to each other through chaotic scattering, (35~ and the 
formula (4.36) results. (9) 

As we already emphasized in the Introduction, dynamical chaos is a 
phenomenon in itself occurring in the microscopic dynamics of large and 
many-body systems offering us a unique opportunity to understand the 
origin of stochasticity in these deterministic systems without the contro- 
versial assumptions of kinetic theories. We now see better that the KS 
entropy per unit time of the microscopic dynamics provides us with a 
quantitative measure of dynamical randomness. 

In Section 5 we showed how chaotic scattering is related to the 
statistical aspects of diffusion. In scattering processes on large systems, the 
scattering functions are very irregular due to the fractal repeller of trapped 
trajectories and this irregularity is related to the transport processes. 

In Section 6 the scattering process was turned into a typical non- 
equilibrium process with a concentration gradient across the scatterer. 
Fick's law was shown to be valid here also because of the dynamical 
instability which prevents the occurrence of non-Fickian profiles. 

Although the concepts introduced in the present paper were applied to 
the multibaker chain, we believe that they are general and can be applied 
to more realistic systems. The multibaker chain shares several properties 
with the periodic (21'22) or random (67) Lorentz gases in which most of the 
previous concepts can also be studied. Besides such models with a few 
degrees of freedom, hard-sphere or hard-disk fluids can also be treated by 
these methods. The nonequilibrium fractal repellers of Sections 4 and 5 can 
be considered in hard-sphere or Lennard-Jones gases in nonequilibrium 
conditions. (68'69~ For instance, if the gas container is punctured by a small 
hole, there is effusion of the gas out of the container. In the spirit of 
Section 4.8, a fractal repeller is defined as the set of trajectories where the 
particles are trapped in the container, a situation which is highly unstable. 
The escape rate of this repeller is related to the effusion rate of the gas. In 
the experiment where two containers are connected to each other through 
a small hole, there are fluctuations in the number of particles in each reser- 
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voir a l though the total number  of particles in both reservoirs is constant.  
The lifetime of  the fluctuations can be studied by extending the method of 
Sections 4.6 and 4.8. Heat  conduct ion or viscosity can be treated in a 
similar way by considering the fractal repeller formed by the highly 
unstable set of trajectories where the total energy or m o m e n t u m  in a region 
of the system remains higher than the equilibrium ones. The decay rate 
from such a nonequil ibrium condit ion could be calculated with Nav ie r -  
Stokes equat ions in order  to see how the rate depends on the t ransport  
coefficients and the geometry of  absorbing boundary .  On  the other hand, 
we can conjecture that  the escape rate from a so-defined fractal repeller is 
given as the difference between the sum of Lyapunov  exponents and the KS 
entropy. Accordingly, the t ranspor t  coefficients would be given in terms of 
the quantities characterizing the dynamical  chaos of  the fractal repeller. 

Of  great theoretical interest are the fractal repellers obtained in 
trajectory reconstruct ion when a measuring device observes a gas of hard 
spheres, for instance. The results of Section 4.7 suggest that  the information 
dimension of fractal sets reconstructed from a given trajectory is close to 
the phase space dimension when the part i t ion built by the observing device 
is rough,  while this information dimension decreases to zero when the 

Di(Fo) 

D M = 1 0 2 4 ~  

0T l• h(P) 
0 hKs = 1033 

[digits/sec] 

Fig. 31. Schematic diagram of the information dimension of the fractal set obtained by 
trajectory reconstruction from the data produced by a measuring device observing a mole of 
gas with a resolution characterized by the entropy per unit time h(~) of the partition ~ of 
phase space into the resolution cells. For a low-resolution derive, the phase space is resolved 
into fractal sets of dimension close to the phase space dimension of the mole of particles, 
namely D~, ~ 6 N A y  ~ 1 0  24. On the other hand, for a hypothetical high-resolution device, the 
entropy of which is close to the KS entropy of the gas ( ~ 10 33 digits/sec mole), the dimension 
of the fractal set drops to zero in the limit of perfect resolution into distinct trajectories. 
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partition becomes finer and finer and its entropy reaches the KS entropy 
of the system. For such partitions like the generating partition, the 
observation of the dynamics can be resolved into individual trajectories. 
Otherwise, the measuring device can only distinguish fractal sets whose 
information dimension is not much smaller than the phase space dimen- 
sion. This behavior is schematically represented in Fig. 31. Because the 
accumulation rate of data of the available measuring devices is very small 
compared to the KS entropy of the gas calculated in the introduction, we 
cannot expect trajectory resolution for typical gases and we understand in 
this way the success of the Boltzmann equation based on smooth one- 
particle densities. 

The properties described in the present paper are deeply related to the 
fact that the entropy per unit time and volume is positive for many-body 
interacting classical systems. We remark here that a definition of dynamical 
entropy is also available for many-body quantum systems as shown by 
Connes et al. 17~ Accordingly, we believe that some of the previous 
considerations can be extended to the quantum description. 

APPENDIX 

In this Appendix, we construct some fractal repeller related to the 
dyadic expansion of real numbers given by the following map of the unit 
interval: 

~b(x) -- 2x (mod 1) (A.1) 

Our purpose is to show that, for this simple map, some of the fractals 
considered in Section 4 reduce to known examples. 

A.1. The Eggleston-Billingsley Problem 

We define the set of real numbers for which the dyadic expansion 
contains 1 with the frequency 0 ~< ~ < 1, 

{ } ~g-(~) = X e  [-0, 1 [ :  --1 E I i ( ~ m x )  ' ~ (A.2)  n~oo 
/'/ m =0 

where 

10 for l/2~<x< 1 
I i ( x )  = otherwise 

(A.3) 
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The dynamical  system (A.1) is known to be i somorph  to a Bernoulli 
process on the symbols  {0, 1} with probabil i t ies (1/2, 1/2), so that  the 
M a r k o v  chain matr ix  and its invar iant  probabi l i ty  are 

=(1/2 1/2) 
P \ 1 / 2  1/2J' with p = ( 1 / 2  1/2) (A.4) 

and the matr ix  (4.64) is here 
0 1 

0 (1 /2  e~/2 "] (A.5) 
R = 1 \ 1 / 2  e~/2J 

with the eigenvalues 0 and ( e~+  1)/2. The generat ing function (4.66) is thus 

1 + e  ~ 
G(fl) = In - -  (A.6) 

2 

and its Legendre t ransform (4.54) (4.55) is 

F(e)  = - ~  In e - (1 - e) ln(1 - c~) - In 2 (A.7) 

which gives minus the escape rate. These functions are drawn in Fig. 32. 
According to (4.58), with In 4 replaced by the L y a p u n o v  exponent  In 2 of 
the m a p  (A.1), the Hausdor f f  d imension of the set /~(~) is then 

1 
dn = i - ~  [ - ~  In ~ -  (1 - ~ ) l n ( 1  - ~ ) ]  (A.8) 

fi(13) 

, U" 

Z" 

. . . . . . . . . . . . . . . . . . . .  ; in2 

F[a) 

0 / 
-In2.  

1 
i 

(a) (b) 

Fig. 32. (a) Generating function G(fl) of the residence time in the interval 1/2 ~< x < 1 for the 
map x~2x  (mod 1) of the unit interval; (b) Legendre transform F(c 0 of G(fl) giving the 
escape rate out of the fractal set of trajectories spending a fraction ~ of time in the interval 
1/2~<x< 1. 
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which is the formula given by Eggleston ~71~ and Billingsley. ~123 The KS 
entropy of Y(~) is then 

h K s  = --~ In ~ -- (1 -- ~) ln(1 -- ~) (A.9) 

A.2. M a n y  Independent  Particles in the Unit  Interval  

The trajectories for one particle moving under the mapping (A.1) in 
the unit interval J are in one-to-one correspondence with infinite sequence 
of 0 and 1 

~ = o0o91o2--.  (A.IO) 

We assume here that N independent particles move on the unit interval 
under (A.1). The phase space is now J | 1 7 4  -.- |  and the trajectories 
of the system are described by simply infinite sequences composed at each 
iteration of N-tuples of the symbols 0 and 1 [cf. (4.88)]. At each instant of 
time, 2 N different states are possible, so that the KS entropy per unit time 
is 

2 = h K s = N l n  2 (A.11) 

corresponding to the invariant measure (4.90) with p ~ =  1/2. A non- 
equilibrium condition can be imposed on the system selecting trajectories 
_O such that a certain number of particles is always present in the right- 
hand half of the unit interval, 

N 

MI <~ ~ w nr''(i) ~ ~ M2, with 1 ~< M 1 ~< m 2 ~< N (A.12) 
i = 1  

The examples of an invariant set for N = 2  are depicted in Fig. 33. 
Imposing the condition where M1 = 1 but M2 = 2 select a fractal repeller in 
phase space which is a Sierpinski gasket (72) with a KS entropy of 

hKs = In 3 < 2 = In 4 (A.13) 

and a Hausdorff dimension 

In 3 
O H  = In 2 (A.14) 

This example illustrates the formation of a fractal repeller in a dynamics 
with several independent particles by a nonequilibrium condition on the 
number of particles in some domain of phase space. 
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Ml=M2=O 

DH= 0 

M1=Mz=1 Ml=Mz=2 M1=1, Mz=2 

N N 
i i : 

DH= 1 r*]H= 0 DH= In B 
tn 2 

Fig. 33. Examples of fractal and nonfractal repellers generated in the system of two inde- 
pendent particles moving under the mapping x--* 2x (mod 1) in the unit interval. The first 
column depicts the generation of the invariant set under the condition that both particles are 
always in 0 ~<x < 1/2. The single trajectory x I = x 2 = 0 is selected and D n = 0. The second 
column corresponds to the condition that a particle is always in 0 ~< x < 1/2 and the other in 
1/2 ~< x < 1. A line of initial conditions is selected and DH = 1. The third column corresponds 
to a similar condition as in the first one except that here both particles must be in 1/2 ~< x < 1. 
The trajectory x~ = x2 = 1 is now selected and D H = 0. The fourth column shows the genera- 
tion of a Sierpinski gasket under the condition that the interval 1/2 ~< x < 1 is occupied at each 
iteration by at least one particle. In this case, D H = In 3/ln 2. 

When the number N of particles is large so that 

M1 m 2  
- - f  N N 

then the KS entropy becomes 

hKs = U [ - - f l n  f - (1 - f ) l n ( 1  - / ) ]  

and the Hausdorff dimension 

N 
D .  = ~ [ - f  In f -  (1 - f )  In(1 - f ) ]  

(A.15) 

(A.16) 

(A.17) 

We observe a similarity with the results of Section A.1. If we require that 
the N independent particles spend a fraction f =  ~ of their time in the 
domain 1, then the same KS entropy and Hausdorff dimension per particle 
would be obtained as with the instantaneous condition of the present 
section. 
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